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This review article aims to provide a comprehensive and understandable account of the theoretical
foundation, modeling issues, and numerical implementation of the Lagrangian—Eulerian (LE) approach
for multiphase flows. The LE approach is based on a statistical description of the dispersed phase in terms
of a stochastic point process that is coupled with a Eulerian statistical representation of the carrier fluid
phase. A modeled transport equation for the particle distribution function — also known as Williams’
spray equation in the case of sprays — is indirectly solved using a Lagrangian particle method. Interphase
transfer of mass, momentum and energy are represented by coupling terms that appear in the Eulerian
conservation equations for the fluid phase. This theoretical foundation is then used to develop LE sub-
models for interphase interactions such as momentum transfer. Every LE model implies a corresponding
closure in the Eulerian—Eulerian two-fluid theory, and these moment equations are derived. Approaches
to incorporate multiscale interactions between particles (or spray droplets) and turbulent eddies in the
carrier gas that result in better predictions of particle (or droplet) dispersion are described. Numerical
convergence of LE implementations is shown to be crucial to the success of the LE modeling approach. It

TWO‘Phase flow is shown how numerical convergence and accuracy of an LE implementation can be established using
Numerical convergence grid-free estimators and computational particle number density control algorithms. This review of recent
advances establishes that LE methods can be used to solve multiphase flow problems of practical
interest, provided sub-models are implemented using numerically convergent algorithms. These insights
also provide the foundation for further development of Lagrangian methods for multiphase flows.
Extensions to the LE method that can account for neighbor particle interactions and preferential
concentration of particles in turbulence are outlined.
© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Introduction and objectives

This paper describes the use of the Lagrangian—Eulerian (LE)
approach to calculate the properties of multiphase flows such as
sprays [4] or particle-laden flows that are encountered in many
energy applications. The LE approach is used to denote a family of
modeling and simulation techniques wherein droplets or particles
are represented in a Lagrangian reference frame while the carrier-
phase flow field is represented in a Eulerian frame. This paper
primarily focuses on the use of the LE approach as a solution
method for the transport equation of the droplet distribution
function (ddf) or number density function (NDF), which is also
known as Williams’ spray equation. In a recent review article [1],
Fox notes that the NDF representation of the particle phase
constitutes a mesoscopic approach that offers a clear separation
between physical and mathematical approximations. Since the LE

approach is widely used to simulate multiphase flows, a compre-
hensive description of this approach can be of use to theoreticians,
model developers and end-users of simulations.

In order for any simulation methodology such as the LE
approach to be a predictive tool, it must be based on

(i) a mathematical representation that is capable of representing
the physical phenomena of interest,
(ii) accurate and consistent models for the unclosed terms that
need to be modeled, and
(iii) a numerically stable and convergent implementation.

There are challenges in each of these areas that must be sur-
mounted in order to develop such a predictive LE simulation
methodology for multiphase flows. Therefore, this paper addresses
key issues related to the LE approach in the areas of: (i) mathe-
matical representation, (ii) physics-based modeling, and (iii)
numerical implementation. Considerable progress has been made
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in addressing many of these challenges since the inception of the LE
approach. This article attempts to summarize these advances and
also outline opportunities for further development of the LE
approach.

Multiphase flows in energy applications are often also turbulent,
reactive flows. Since the field of turbulent reactive flows is a mature
research area with many authoritative reviews [2—4], this work will
focus mainly on the multiphase aspects of the flow with some
reference to turbulence interactions. There is also a wide range of
physico-chemical phenomena that are encountered in nonreacting
multiphase flows alone, and these are highly dependent on the
particular application area. For instance, in the area of sprays one
can find many comprehensive reviews of single-droplet behavior
and spray atomization and vaporization [5—7]. In light of the wide
variety of physico-chemical phenomena in multiphase flows, this
review will only consider those generic characteristics of
a dispersed two-way coupled, two-phase flow that need to be
incorporated in the LE formulation.

The nonlinear and multiscale interactions in multiphase flow
result in a rich variety of flow phenomena spanning many flow
regimes. One of the primary features of multiphase flow that
distinguish it from advection and diffusion of chemical species in
multicomponent flows is the inertia of dispersed-phase particles or
droplets. Particle inertia results in a nonlinear dependence of
particle acceleration on particle velocity outside the Stokes flow
regime, and this nonlinearity is important in many applications
where the particle Reynolds number is finite. Also in many multi-
phase flows one must consider the influence of the dispersed phase
on the carrier-phase momentum balance, and this two-way
coupling is a source of nonlinear behavior in the system.

Polydispersity of the dispersed-phase particles or droplets
introduces a range of length and time scales. Interactions of these
polydisperse particles with carrier-phase turbulence that is inher-
ently multiscale in nature presents further modeling challenges.
Furthermore, it is not uncommon to encounter a wide variation in
dispersed-phase volume fraction in the same multiphase flow,
ranging from dilute to dense. For example, in a fluidized bed the
particle volume fraction can range from near close-packed at the
base of the bed to less than 5% in the riser. The particle volume
fraction in conjunction with the level of particle fluctuating velocity
(that can be characterized by the particle Mach number) deter-
mines the relative importance of advective transport to collisional
effects. Since unlike molecular gases not all multiphase flows are
collision-dominated, it is possible for the probability density
function (PDF) of velocity to depart significantly from the equilib-
rium Maxwellian distribution. These nonlinearities, multiscale
interactions and nonequilibrium effects lead to the emergence of
new phenomena such as preferential concentration and clustering
that have a significant impact in multiphase flow applications.

Interpreting the LE simulation approach as a numerical solution
to the ddf (or NDF) evolution equation reveals the specific advan-
tages of this mesoscopic [1] mathematical representation under-
lying the LE approach for capturing these nonlinear, multiscale
interactions and nonequilibrium effects in multiphase flow. Wil-
liams [8] introduced the ddf in his seminal 1958 paper, and its
counterpart in the kinetic theory of gas—solid flow is the number
density function or one-particle distribution function (see Koch,
1990 [9] for example). The ddf or NDF is an unnormalized joint
probability density of droplet (or particle) size and velocity as
a function of space and time. Since the ddf (or NDF) contains the
distribution of droplet (or particle) sizes it naturally captures the
size-dependence of drag and vaporization rate in closed form,
whereas other approaches such as the Eulerian—Eulerian (EE) two-
fluid theory [10—12] that only represent the average size and
average velocity of droplets (or particles) must rely on approximate

closure models. One of the major challenges in the two-fluid
averaged equation approach that is based on average size is the
incorporation of the range of droplet (or particle) sizes, and the
nonlinear dependence of interphase transfer processes on droplet
(or particle) size. The two-fluid EE approach referred to here is not
to be confused with the Eulerian moment equations that can be
derived from the ddf, although those moment equations also
contain less information than the ddf. A complete discussion can be
found in Pai and Subramaniam [13].

Similarly, because the ddf (or NDF) contains the velocity
distribution of droplets (or particles), it also captures the nonlinear
dependence of particle drag on particle velocity in closed form.
Furthermore, particle velocity fluctuations, whose statistics are
characterized by the covariance and higher moments of particle
velocity, are also easily modeled in the LE framework [14,15]. As
pointed out by Fox et al., the LE approach as well as the quadrature
method of moments (QMOM) developed by Fox [16] lead to
physically correct solutions to the problem of crossing particle jets
[17—19], whereas the Eulerian two-fluid theory leads to anomalous
results for this problem. Similar difficulties are encountered by the
EE two-fluid approach to particle or droplet jets impinging on
surfaces, and particle- or droplet-laden flows in regimes not
dominated by collisions. This is because EE two-fluid formulations
are not capable of representing the fluxes, and resulting physical
phenomena, associated with two streams of particles (or droplets)
moving with different velocities at the same physical location,
whereas this is naturally incorporated in the LE approach.

In sprays and gas—solid flow in risers the particle Stokes! and
Knudsen numbers? span a wide range resulting in velocity distri-
butions that can be far from equilibrium and need not be close to
a Maxwellian distribution. However, most EE two-fluid formula-
tions are based on kinetic theory closures that are only valid in the
limit of low Knudsen number for equilibrium velocity distributions
that are Maxwellian, or nonequilibrium distributions that are slight
departures from Maxwellian. Since nonequilibrium velocity
distributions are admissible in the LE approach, it has a significant
advantage when it comes to simulation of sprays or riser flows all
the way from the dense to the dilute regime over a range of droplet
or particle Stokes and Knudsen numbers.

Another advantage of the LE approach over the EE two-fluid
theory is its ability to accurately represent collisions in the pres-
ence of flow. It is well known that interactions with the ambient
flow can significantly alter the collision characteristics in particle-
laden or droplet-laden flow (grazing collisions), and the effective
restitution coefficient is a function of the particle or droplet Stokes
number [20]. These effects are easily incorporated in the LE
approach. Also from a numerical standpoint, the LE approach
minimizes numerical diffusion in dispersed-phase fields such as
volume fraction and mean velocity when compared to grid-based
Eulerian approaches.

Along with the many advantages that the LE approach offers,
there are some aspects of the LE approach that present opportu-
nities for improvement as well. Since many early LE implementa-
tions are formulated only for dilute flow and invoke the point
particle approximation, these have sometimes been misinterpreted
as intrinsic features of the LE method. The formulation of LE models
has also not always respected the requirement of being consistent
with its corresponding Eulerian—Eulerian two-fluid counterpart,

! The particle or droplet Stokes number is the ratio of the particle momentum
response time to a characteristic flow time scale.

2 The particle or droplet Knudsen number is the ratio of the mean free path of
a particle to a characteristic length scale associated with the variation of the
average number density field.
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and in some instances the models are not independent of numer-
ical parameters. Straightforward numerical implementations of the
LE method [21,22] without appropriate algorithms for computing
particle-grid coupling terms has led to the conclusion that LE
formulations may not be numerically convergent, or are at best
conditionally convergent [23—26]. Finally, the computational work
requirement of the LE method is higher than the EE averaged
equation approach because it contains a more complete represen-
tation of the multiphase flow. Owing to these reasons, a cursory
review of the literature on LE methods may leave the (incorrect)
impression that while LE methods hold the promise of predictive
simulation of multiphase, this has not been realized due to certain
inherent limitations of the approach itself. In this context, the
objectives of this review are to demonstrate that:

1. the LE formulation is general enough that it can be extended to
dense multiphase flows with finite size particles, provided
appropriate models are used and volume—displacement effects
are accounted for

2. there are advantages to developing LE sub-models that are
consistent with their EE counterparts, and multiscale interactions
can be incorporated into LE sub-models to accurately model
particle dispersion and energy transfer with the carrier fluid

3. comprehensive numerical tests reveal that the use of grid-free
estimation methods and computational particle number
density control result in numerically convergent and accurate
LE simulations

4. understanding the mathematical formalism underlying the LE
approach can give insight into how it might be extended to
accurately represent new phenomena such as preferential
concentration.

We begin with a brief history of the development of the LE
method.

1.2. Lagrangian—Eulerian methods

Williams developed the fundamental spray equation based on
a Lagrangian description of the spray droplets [8] using the droplet
distribution function. Analytical approaches based on reduction of
a Liouville-like equation to a one-particle distribution function
have been developed for particle-laden suspensions [9] and bubbly
flows [27]. O'Rourke developed the LE method for sprays by
explicitly coupling Williams’ ddf equation to an Eulerian descrip-
tion of the averaged gas-phase equations, and he derived the
interphase exchange terms in terms of integrals over the ddf.

A landmark in the evolution of the LE method is the pioneering
work of O'Rourke [28,29] and O’Rourke et al. [21], who developed
a numerical implementation of the LE method for sprays in internal
combustion engine applications that is now widely used as the KIVA
family of codes [21,22]. These works laid the foundation of the modern
LE approach and established the early sub-models to describe the
physics of droplet acceleration, vaporization, collisions, coalescence
and breakup. These two-way coupled calculations were a significant
advancement over earlier one-way coupled computations, which are
essentially Lagrangian tracking algorithms. Dukowicz [30] developed
a two-way coupled particle-fluid numerical model for sprays that
included momentum coupling and volume displacement effects.

The LE methods discussed thus far couple Lagrangian tracking of
computational particles to a carrier flow description based on
Reynolds-averaged Navier—Stokes (RANS) equations. However, it is
possible to use the LE approach to couple a Lagrangian description
of the dispersed phase with large eddy simulations (LES) or direct
numerical simulation (DNS) of the carrier gas phase, resulting in
the following principal categories of LE methods:

1. Fully-resolved DNS? of droplet or particle-laden flow where the
exact Navier—Stokes equations are solved by fully resolving the
droplet or particle by imposing boundary conditions at each
particle or droplet’s surface [31—40]: DNS in Table 1

2. Point particle DNS (PP-DNS) with physical droplets or particles
[41—47]: PP-DNS® in Table 1

3. PP-DNS with stochastic particles [48]: PP-DNS') in Table 1

4. Point particle LES with physical droplets [49,50]: LES® in
Table 1

5. Point particle LES with stochastic particles [51—53]: LES® in
Table 1

6. Averaged equations: RANS CFD in Table 1.

The principal difference between DNS and PP-DNS is that while
the former can be used to quantify the interphase models, PP-DNS
requires assumed models for interphase transfer terms such as
particle acceleration and droplet vaporization. Within PP-DNS
a further distinction can be made whether computational particles
or parcels are used to represent the physical system. In the LES
studies this distinction is less significant, since the particles or
droplets always obey modeled equations for interphase transfer due
to drag or vaporization. The treatment of collisions can also be used
to categorize LE methods as those that employ a statistical treatment
of collisions [26,28,54] in contrast to direct calculation of collisions
between particles using either hard-sphere collisions [55] for low
volume fraction or soft-sphere discrete element method (DEM)
collision models for high volume fraction [56—58]. Soft-sphere DEM
collision models are used in LE simulation of fluidized beds [59].

1.3. Outline

With this brief background on LE methods, the rest of this paper is
devoted to an exposition of the theoretical, modeling and numerical
aspects of the LE approach as a solution to the ddf or NDF. The next
section describes the two basic approaches used to formulate the
theory of two-phase flows: (i) the Lagrangian—Eulerian based on
a stochastic point process representation, and (ii) the Eulerian—
Eulerian based on a random field representation. Section 3
describes the droplet distribution function and its regime of validity.
The dilute flow approximation and the point particle approximation
that are frequently invoked in the LE approach are reviewed. The
mean mass and momentum conservation equations implied by the
ddfevolution are derived. The EE closures implied by LE models at the
level of the mean conservation equations are described. The velocity
second moment equation implied by the ddfin the LE approach is also
derived. The relationships between the LE and EE approaches are then
briefly reviewed. The models that are used in the LE approach are
discussed in Section 4. Numerical solution of the ddf equation is
described in Section 5. Selected examples of state-of-the-art LE
simulations are given in Section 6. Promising directions for extension
of the LE approach are discussed in Section 7. Section 8 gives
a summary and presents conclusions of the paper.

2. Multiphase flow representation

The principal mathematical representations of multiphase
flows are described so that the LE approach can be understood in
this wider context. This leads to the modeling principle of
consistency: specifically, the development of LE sub-models that

3 In the multiphase flow literature many studies use the acronym DNS for

methods where the droplets or particles are not resolved. In this review such
methods are referred to as PP-DNS, and the term DNS is used only for fully-resolved
droplet or particle-laden flow simulations.
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Table 1
Representation of carrier flow and dispersed phase in different LE simulations:
DNS® and LES® are denoted hybrid simulations.

Carrier flow
fields: velocity,
pressure

Simulation method Dispersed phase

DNS with fully-resolved Realization: Realization: model

physical particles/ u(x,0), p(x.t) as point field
droplets xO(e), Vi),
= 1,.N(D)}

PP-DNS® with physical Realization: Realization: point field
particles/droplets u(x,t), p(x,t) x(e), Vi),

as point sources i=1,., Ny(t)}
PP-DNS® with Realization Statistically averaged
stochastic particles density fix,v,r,t)

LES® with physical Filtered field Spatially filtered point
droplets as point of a realization field
sources
LES® with stochastic Filtered field Spatially filtered density
particles of a realization
RANS Mean fields Statistically averaged
@y, ) density fix,v,r,t)

are consistent with the EE two-fluid theory. It also gives insight
into meaningful comparison of LE simulations with results from
experiment and direct numerical simulation. Finally, it shows the
extensions needed in the LE approach to accurately represent
physical phenomena such as preferential concentration and
clustering.

A statistical description of multiphase flows is useful to repre-
sent the statistical variability in configurations of the dispersed-
phase particles or droplets. Also unlike single-phase flows, the
velocity and pressure fields even in laminar multiphase flows
exhibit statistical variability, and are meaningfully represented by
random fields. In spite of the similarities between the statistical
theory of multiphase flows and that of turbulent single-phase flow,
there are in fact many important differences.

Statistical approaches to multiphase flow can be classified on
the basis of three criteria: (i) whether each phase is represented
using a random field or stochastic point process* description, (ii)
whether each phase is represented in an Eulerian or Lagrangian
reference frame, and (iii) the level of closure in the statistical
theory.

As shown in Fig. 1, the two principal approaches are: (i) the
random field approach in which both dispersed and carrier phases
are represented as random fields in the Eulerian frame, and (ii) the
point process approach in which the dispersed phase is represented
as a stochastic point process in the Lagrangian frame and the carrier
phase represented as a random field in the Eulerian frame. The
random field approach at the closure level of moments leads to the
EE two-fluid theory in its ensemble-averaged [10,11] and volume-
averaged variants [60]. The LE approach corresponds to a closure
of the point process approach at the level of the ddf or NDF, with
the carrier phase being represented in a Eulerian frame through
a RANS closure, LES or DNS. In the following subsections, the LE
approach is developed in the context of this family of statistical
theories of multiphase flow.

2.1. Realization of a multiphase flow

The foundation of any statistical theory rests on the definition of
the ensemble Q of realizations (or events) w € Q for which the
probability measure is defined. Fig. 1 shows the description of

4 The term point process should not be confused with the ’point particle’
assumption. Stochastic point processes are mathematical descriptors of non-
contiguous objects in space that can be spheres of finite radius.

a realization of a multiphase flow in the random field and point
process descriptions. A brief description of these two principal
statistical representations of multiphase flows follows.

2.2. Eulerian representation of both phases

2.2.1. Random field description

In statistical theories of turbulent single-phase flow, the Euler-
ian velocity field is represented as a random vector field [61]. A
similar approach can be adopted for two-phase flows, but in
addition to the velocity (and pressure) field it is also necessary to
specify the location and shape of the dispersed-phase elements.
The velocity field U(x,t;w), which is defined in both thermodynamic
phases, is a vector field that is defined at each point x in the flow
domain in physical space, on the wth realization. The dispersed-
phase elements in that same realization are similarly described
by a dispersed-phase indicator field I4(x,t;w), which is unity for all
points inside the dispersed-phase elements that are contained in
the flow domain, and zero outside. Statistical theories based on
random field representations require the consideration of multi-
point joint probability density functions, and these have not
resulted in tractable engineering models even for single-phase
turbulent flow [61—63]. Edwards presents an attempt at formu-
lating such a theory for multiphase flows [64], but no tractable
models have emerged based on this theory.

The simplest multipoint theory based on the random field
representation that is useful to modelers is a two-point represen-
tation. A comprehensive two-point statistical description of two-
phase flows based on the random field representation can be
found in Sundaram and Collins [65]. However, even this two-point
theory needs to be extended to statistically inhomogeneous flows
before it can be applied to realistic problems. Even in the homoge-
neous case the resulting two-point equations lead to many unclosed
terms that need closure models. Finally, efficient computational
implementations need to be devised before the practical application
of the two-point theory can be realized. Therefore, most engineering
models currently rely on a simpler single-point theory.

2.2.2. Two-fluid theory

If statistical information at only a single space—time location
(x,t) of the random field representation is considered, this results in
a single-point Eulerian—Eulerian two-fluid theory. In this case the
statistics of the velocity field U(x,t;w), and the dispersed-phase
indicator field Iy(x,t;w), are considered at a single space—time
location, i.e., the indicator field reduces to an indicator function.
The velocity and indicator function can be treated as random
variables (or random vector in the case of velocity) parametrized by
space and time variables. The averaged equations resulting from
this approach are described in Drew [10], and Drew and Passman
[11]. The single-point Eulerian—Eulerian theory can also be devel-
oped at the more fundamental level of probability density func-
tions, and this theory is described in Pai and Subramaniam [13].

2.3. Lagrangian representation of the dispersed phase

An alternative approach is to describe the dispersed-phase
consisting of Ns solid particles or spray droplets using Lagrangian
coordinates {X(¢), VA(£), RA(¢), i = 1,...,Ns(t)}, where X()(t) denotes
the ith dispersed-phase element’s position at time ¢, VA(¢) repre-
sents its velocity, and R(t) its radius. Additional properties can be
included in variants of this representation without loss of gener-
ality. The rigorous development of a statistical theory of multiphase
flows [66] using the Lagrangian approach relies on the theory of
stochastic point processes [67], which is considerably different from
the theory of random fields [61,68,69] that forms the basis for the
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Fig. 1. Representations of multiphase flow as random fields or a point process embedded in a random field, leading to the EE and LE approaches, respectively. Both approaches can

be used at different levels of closure, and their equivalence is indicated.

Eulerian—Eulerian approach. Such a theory of multiphase flows is
not a trivial extension of the statistical theories for single-phase
turbulent flows, but in fact bears a closer relation to the classical
kinetic theory of gases and its extension to granular gases [70] and
gas—solid flow [9].

2.4. Point process description

Stochastic point process theory [67,71,72] enables the statistical
description of non-contiguous objects that are distributed in space,
such as solid particles or spray droplets, as a point process. This
provides the necessary mathematical foundation to describe the
statistics of solid particles or spray droplets. The theory of marked
point processes allows us to assign the size of the particle or droplet
as a “mark” or tag to the particle or droplet location. From this it is
clear that stochastic point process theory does not require that
spray droplets be modeled as point particles that correspond to ¢-
function sources of mass and momentum. However, there is
a widespread misconception in the spray literature that point
process models imply ‘point particle’ models.

The simplest stochastic point process is the homogeneous Pois-
son process characterized by complete independence between the
distribution of points, an example of which is shown in Fig. 2(a). This
is not a good model for particles or droplets of finite size because the
independence property allows neighboring particles or droplets to
overlap (see Fig. 2(a)). A better analytical point process model for
dilute multiphase flows is the Matérn hard-core process, which is
obtained by thinning (or pruning) overlaps from the Poisson model.
An example of the Matérn hard-core process obtained by thinning
the Poisson process of Fig. 2(a) is shown in Fig. 2(b). The advantage of
mathematical models such as the Matérn hard-core process is that
their statistical properties, such as number density and pair corre-
lation (see Fig. 3), are known analytically.

It is interesting to compare the spatial distribution of particles
from simulation with these analytical point process models. Fig. 2(c)

shows the equilibrium spatial distribution of particles obtained
following elastic collisions using a soft-sphere DEM model, and its
corresponding pair correlation function is shown in Fig. 3. There is
a higher probability of finding neighbors within 2 particle diameters
from the DEM simulation as compared with the Matérn model.
Although these point process models are idealized representations
of multiphase flows, they do provide a useful conceptual framework
to analyze experimental and simulation data.

The statistical representation of a multiphase flow as a point
process has been formulated by Subramaniam [66]. It is shown that
the complete characterization of all multiparticle events requires
consideration of the Liouville pdf (cf. Fig. 1), and a hierarchy similar
to the BBGKY hierarchy [73] can be developed for multiphase flows
as well [66].

2.4.1. Complete representation of the dispersed phase as a point
process

A key result of the point process theory of multiphase flows [66]
is the complete point process statistical description. This involves
specifying the sequence of probabilities for the events [Ns = k],
k > 1, which are denoted

Pk = P[Ns = k], k=1, (1)

and the corresponding sequence of symmetrized Liouville densities

f[f]{fk(xl’v17r]7"~7xk7vk7rk;t)7 kz 1. (2)

This complete point process statistical description of a multi-
phase flow is then related to Williams’ droplet distribution function
(ddf) through the single-particle surrogate pdf. The single-particle
surrogate pdf is defined in terms of the symmetrized Liouville
probability density, in a manner analogous to the single-particle
probability density in the BBGKY hierarchy of kinetic theory. The
single-particle surrogate density is defined as
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Fig. 2. Spatial distribution of the dispersed phase in multiphase flows. Point process models for representing multiphase flows at 10% dispersed-phase volume fraction: (a) the
simple Poisson model results in overlapping particles or droplets. (b) The Matérn hard-core point process is obtained by removing overlapping spheres from a parent Poisson
process through a procedure called dependent thinning. Particle configurations obtained from soft-sphere DEM with elastic collisions: (c) at 10% solid volume fraction, and (d) at 1%
solid volume fraction. Contour levels in (c) and (d) are for a passive scalar value of 0.5 obtained from fully-resolved DNS at a Reynolds number of 20 (Re,; = Wd,/v) in a homogeneous
gas—solid flow with isothermal particles at zero scalar value, and the ambient fluid at scalar value of unity. Significant neighbor particle interactions are found even at 1% solid

volume fraction!

s =k _
N <](X1,V17r1;f)=/ddeVszI-~kad"kdrkf§Vysn;k](X1,V1,T1,

where the superscript [Ns = k] serves to indicate that this single-
particle surrogate density is defined for the ensemble which has
a total of Ng = k particles or droplets. Therefore, the single-particle
surrogate density fl[ss =K (X1,Vq,17;t) is a density conditional on the
total number of particles or droplets Ns being equal to k. For
convenience of notation we use the simpler form f{9(x,v1,r1;t) to
N, =K
denote f1[s ](x1 ,Vq,T1;t).

2.4.2. The droplet distribution function
Williams’ droplet distribution function is related to the single-
particle surrogate pdf through the following relation:

-~-7xkvvkark§t)7 (3)

fxvrt =S pfOx vt =Y pkfld kv, (4)

=1 =1

which reveals that the ddf is a superposition of each of the number
densities of particles or droplets in phase space f(")(x,v,r,t), where
each number density fX(x,vr,t) is weighted by the appropriate
probability pg.

If the multiphase flow is modeled as a marked point process
[74], then the ddf can be expressed as the product of the intensity of
the point process in physical space, and a joint probability density
function (jpdf) of velocity and radius conditioned on physical
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Fig. 3. Pair correlation function g(r) as a function of separation distance between
centers r for 2D disks distributed according to the Poisson and Matérn hard-core
processes shown in Fig. 2 at 10% dispersed-phase volume fraction. The pair correla-
tion function for 3D spheres from soft-sphere DEM is also shown at 10% solid volume
fraction.

location. The jpdf of velocity and radius conditioned on physical
location f{, (v, 1]X; t) is expressed in terms of the ddf as:

f\?R(V,r\X; t) = {f(;(&v,n t)/ns(x;t) ig ;; 87 (5)
where
ns(x;t)= /f(x,v, r,t)dvdr (6)

is the number density. This shows that the ddf is capable of rep-
resenting polydispersity and capturing the nonlinear dependence
of particle acceleration on velocity. However, the ddf does not
contain two-particle information, nor does it account for the fluc-
tuations in the number of particles about their mean value. These
points are discussed in the following subsection.

2.4.3. Differences from classical kinetic theory

While this characterization is similar to the classical kinetic
theory of molecular gases [73], some of the important differences
are summarized below:

1. Effect of neighbor particles can be significant even at low volume
fraction because these interactions are mediated by the carrier
fluid. Fig. 2 shows that the scalar contours surrounding neighbor
particles can interact even at 1% volume fraction, whereas the
typical rule of thumb for neglecting such neighbor interactions
in dilute sprays is for volume fraction up to 10%. Chiu et al. [75]
have considered spray models that incorporate models for the
pair correlation function that contains two-particle information.

2. Scale separation may be absent in multiphase flows: In molecular
gases the macroscale variation of hydrodynamic variables such
as bulk density occurs on scales much greater than the
microscale (molecular size) or mesoscale (range of interaction
of molecules such as mean free path). However, this is not
guaranteed in multiphase flows. As the example in Fig. 4 shows,
the mean fluid temperature may vary on scales comparable to
the mesoscale spatial structure of particles as characterized by

the pair correlation function. This is because of the strong
coupling between phases whereby particles can heat up or cool
down the fluid, thereby affecting the mean fluid temperature
over relatively small length scales.

3. Fluctuations in number of particles or droplets can be significant
compared to the mean: Fluctuations in number can be impor-
tant near the edge of sprays or when clusters and streamers
form in fluidized bed risers. Such fluctuations are typically
neglected in classical kinetic theory of molecular and granular
gases [76,77]. However, Subramaniam and Pai have recently
shown that these fluctuations can be important in the kinetic
theory of inelastic granular gases [78].

4. Multiphase Liouville equation is not closed: Another important
difference is that while the Liouville equation in the classical
kinetic theory of molecular gases is a closed equation, the same
is not true for the multiphase Liouville equation. The multi-
phase Liouville equation depends on the statistics of the carrier
phase because the acceleration of inertial droplets or particles
depends on the slip velocity.

2.4.4. Equivalence and consistency

The schematic in Fig. 1 shows that a hierarchy of closures ranging
from multipoint probability density functions (PDF) to moment
equations is possible in both random field and point process
descriptions. It can be shown that under certain conditions [ 13] there
is an equivalence between the corresponding levels of closure in both
descriptions. The hierarchy of closures implies that a closure at the
NDFor ddflevelin the LE approach implies a set of moment equations
that correspond to the two-fluid theory in the random field
description. This leads to the principle of developing consistent
models in either approach. Recent work by Pai and Subramaniam
establishes the relations between the point process (LE) and random
field (EE) descriptions [13] at the single-point PDF level of closure.

2.5. Summary

This section described the principal statistical representations of
multiphase flow. The classification of multiphase flow theories into
point process (LE) and random field (EE) categories was explained.
The foundations of the EE two-fluid theory were briefly described.
The connection of the LE approach to kinetic theory was established.
Important differences between the point process (LE) description of
multiphase flows and the classical kinetic theory of molecular gases
were noted. The relation of the ddf to a complete description of
a multiphase in the Lagrangian stochastic point process approach
was explained. This provides the necessary background to under-
stand the LE formulation and its relation to the EE two-fluid theory.

3. Lagrangian—Eulerian formulation

A central concept in the LE formulation is the statistical equiv-
alence of the evolution of the particle or droplet ensemble {X{(t),
Vvi(t), RA(t), i = 1,...Ny(t)} described in Section 2.3 to the evolution
of the ddf. For generality here we consider droplets for which the
radius may also change due to vaporization.

3.1. Droplet evolution equations

The droplet properties associated with the ith droplet evolve by
the following equations:

ax® ;
- = vO(t) (7)
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Fig. 4. Comparison of length scales in multiphase flows. The macroscale corresponds to the variation of average volume fraction or mean fluid temperature in a central jet fluidized
bed (right panel), while the microscale corresponds to the diameter of particles show in the fully-resolved DNS (bottom left panel). The mesoscale corresponds to the spatial
structure of the point process that is characterized by the pair correlation function (middle left panel). The DNS reveals that the normalized average fluid temperature (o)) (top left

panel) varies on length scales comparable to the mesoscale, indicating lack of scale separation. Here (o)) = ((T(f))

is the bulk fluid temperature at the inlet and T; is the particle temperature.

dav® .
= AV (b (8)
dr® o) .

dt = @ (t)7 1= ~’NS(t)7 (9)

where A®) is the acceleration experienced by the droplet, and ew
the rate of radius change due to vaporization. The droplet acceler—
ation A" arises from the force exerted by the carrier gas on the
droplet that can be calculated from the stress tensor at the droplet
surface. Spray droplets also undergo collisions that modify their
trajectory and velocity. Following collisions, droplets may coalesce
or break up into smaller droplets. The evolution of the ddf corre-
sponding to droplet evolution equations can be derived using
standard methods [73,74].

3.2. Evolution equation for the ddf or NDF

Starting from the definition of the ddf in Eq. (4), one can derive
[74] the following collisionless form of the ddf evolution equation
(also referred to as the spray equation) that corresponds to the
droplet evolution equations Eqgs. (7)—(9):

%—[ o]+

0
at [(Ox,v,r;t)f] =0. (10)

[Ak|x v, 0f] + e

Note that summation over Cartesian indices is implied by repeated
Roman subscripts in this paper. In the above equation (Ay|x,v,r;t)
represents the expected acceleration conditional on the location

—Ts)/(Tpin — Ts), where (T®)y is the mean fluid temperature, Ty, in

[x,v,r] in phase space. Similarly (®|x,v,r;t) represents the expected
rate of change of radius (hereafter referred to as the expected
vaporization rate) conditional on the location [x,v,r] in phase space.
The effects of collisions, coalescence and breakup can also be incor-
porated [8,21] to obtain

o

TR [(Ox,v,r;t)f]

i ]+ g [Adx.v.rsof] -+
:fcoll Jrfcoal+fbu- (11)

3.2.1. Regime of validity of the spray equation

A detailed description of the mathematical basis of the ddf
approach is given in Ref. [74]. The practical implications of the
assumptions underlying the ddf approach are briefly summarized
here.

The point process model underlying the ddf approach assumes
that a characteristic size length scale can be associated with each
droplet. From a purely representational standpoint this does not
pose difficulties even for regions of the spray where the liquid
phase is present as nonspherical elements, rather than as fully
dispersed droplets. As long as the volume of such liquid elements
can be defined, one can always associate with each liquid element
a characteristic size length scale which is the radius of a spherical
droplet of equal volume.” The point process model is strictly
inapplicable only in the intact core region of a spray. Therefore, the

5 The information concerning the shape of the nonspherical liquid element is lost
in the process, and will have to be accounted for in the models.
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LE approach does require a separate model for the primary breakup
of a liquid jet resulting in an initial condition for the ddf.

It is noteworthy that two assumptions that are commonly
perceived as necessary to establish the validity of the spray equa-
tion, have not been used in this derivation. They are: (i) the
assumption of point particles, and (ii) the dilute spray assumption.

3.2.1.1. Point process vs. point particle assumption. The assumption
of point particles is different from the stochastic point process
model of a multiphase flow, and is considerably more restrictive.
The point particle assumption requires that the size (radius) of the
particles or droplets be infinitesimal, or at least smaller than the
smallest scale of fluid motions, e.g., the Kolmogorov scale if the gas-
phase flow is turbulent. Here it is shown that multiphase flows with
particles or droplets of finite radius (which may be larger than the
Kolmogorov scale of gas-phase turbulence) can be successfully
modeled using the stochastic point process model. In summary, the
point particle assumption is unnecessary for the representation and
modeling of multiphase flows using the ddf or NDF approach,
which admits particles or droplets of finite size.

3.2.1.2. Dilute assumption. Another commonly held view is that the
ddf approach is valid only for dilute multiphase flows. This results
in unnecessary restrictions being imposed on LE simulations that
require the computed estimate for the average dispersed-phase
volume fraction in a grid cell to be less than some user defined
value (e.g., 0.1). This confuses a theoretical issue with numerics. The
theoretical issue is clarified in this section revealing that this
restriction has no basis, while Section 5.2 shows that numerically
convergent estimation methods also do not impose any restrictions
on the volume fraction.

The average dispersed-phase volume fraction is one measure of
how dilute a spray is. The average dispersed-phase volume (V;(A; t))
in aregion A in physical space may be defined in terms of the ddf as:

(V4(Ast))y= /6’(x;t)dxz / / gwr3f(x,v,r,t) dvdrdx, r>0,
A A i
(12)

‘ gwr3f(x,v7 r,t) dvdr,

[v.r]

r>0, (13)

is the density of average dispersed-phase volume in physical space.
If V4 is the volume associated with region A, then the average
dispersed-phase volume fraction in region A is given by

Walkt) L[y (14)
A

which reveals that if the average dispersed-phase volume density
f(x;t) is uniform in the region A in physical space (i.e., the ddf
fix,v,rt) is statistically homogeneous in A), then 4 is equal to the
average dispersed-phase volume fraction. If f is statistically inho-
mogeneous in A, then Eq. (14) states that the mean value of 4(x;t)
over the volume A is the average dispersed-phase volume fraction.

The validity of the ddf evolution equation does not depend on the
average dispersed-phase volume density. While some models for
drag or heat transfer [21] may be limited to volume fraction (x; t) <
1 because of limitations in the correlations on which they are based,
these can be extended to include a dependence on volume fraction.
In summary, restrictions on the volume fraction in LE simulations
are unnecessary because there is no intrinsic theoretical limitation

on the average dispersed-phase volume fraction in the LE approach,
but rather they arise from non-convergent numerical implementa-
tions that compute the dispersed-phase volume fraction using
Eulerian grid cell-based local averages. In Section 5.2 it is shown that
kernel-based grid-free estimation methods result in numerically
convergent values for the average dispersed-phase volume fraction
and average interphase momentum transfer.

3.3. Eulerian representation of the carrier phase

The LE approach described thus far is very general, and applies
to the entire range of simulations described earlier in Section 1.2,
including coupling with Eulerian representation of the carrier
phase using RANS, LES and DNS. Table 1 lists the representation of
the carrier flow field and dispersed phase for different LE simula-
tion methods.

The specific equations appropriate to each of these simulation
methods can be recovered by appropriate interpretation (realiza-
tion, filtered realization or statistical average) of the Eulerian fluid
velocity field, stress tensor and interphase momentum transfer
term. The specific form of the carrier-phase Eulerian equations
naturally depends on the simulation approach: DNS, LES or RANS.

3.3.1. Instantaneous or filtered Eulerian carrier-phase equations

For DNS where every physical particle or droplet is fully resolved,
these are simply the low Mach number variable-density Navier—
Stokes equations with appropriate boundary conditions at each
particle or droplet’s surface. Details of such particle-resolved
simulations can be found in many works [15,32—35,79—82]. If the
droplets or particles are smaller than the Kolmogorov scale of gas-
phase turbulence, then PP-DNS are useful. In this case the
dispersed phase is coupled by kernel-averaging that particular
realization of the point process [83]. However, Moses and Edwards
[84] showed that coarse-graining DNS of force on a particle does not
lead to a d-function momentum source, as it is often treated in PP-
DNS. The appropriate coarse-graining of momentum transfer from
point particles, and its effect on the carrier-phase pressure field
needs to be investigated more thoroughly.

In single-phase flows, the LES approach of filtering the Navier—
Stokes equations offers an attractive alternative to DNS by
capturing most of the turbulent Kkinetic energy at reduced
computational cost. Similar considerations have led the develop-
ment of LE methods for multiphase flow with LES of the filtered
Eulerian gas-phase equations. The extension of the LES filtering
approach to two-phase flows is neither straightforward, nor unique
[49—-53]. Since there are many approaches to LES of two-phase
flows, the specific form of the coupling in LES®® depends on the
implementation: broadly speaking, in the LE context, this coupling
results in local volume-averaging of the Lagrangian point process
realization of the dispersed phase. The same comments on coarse-
graining DNS to PP-DNS apply to LES®® as well. PP-DNS®®) and LES(®)
couple to a stochastic particle representation of the dispersed
phase and are hybrid methods in the sense that they couple
a realization of the carrier fluid phase with a statistical represen-
tation of the dispersed phase. The LE theoretical basis developed in
this work is relevant for these simulations. For DNS® and LES®)
with stochastic particles, the fluid-phase Eulerian momentum
equation in the dilute limit is often taken to be of the form

auH)
o <T+Uu>.w<f>> — V- <Ffd>7 (15)

where UY) represents the instantaneous fluid-phase velocity in
DNS® (and its filtered counterpart in LES®). Note that this is simply
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the single-phase momentum conservation equation augmented by
the interphase momentum transfer term

<Ffd> = /m(A|x,v,r;t)f(x,v,r,t)dvdr

v.r]

that accounts for the coupling of the dispersed-phase momentum
with the fluid phase.

Insofar as LE methods are concerned, the principal benefit of
DNS is to quantify unclosed terms in the ddf evolution equation (or
its moments), and to develop better models for these terms. Some
details of how particle- or droplet-resolved DNS solutions can be
used to develop LE and EE sub-models are given in Garg et al. [82]. If
point particles are used, as in PP-DNS®® and LES®), then the fore-
going LE theoretical development can be used to interpret the
results. However, such simulations have less value for LE model
development as compared to DNS. Simulations with stochastic
particles such as DNS®) and LES® are essentially LE models with
better representation of the Eulerian carrier phase than RANS, and
the preceding theoretical development is useful in interpreting
the results of these models and comparing them with both fully-
resolved DNS and LE coupled with RANS.

3.3.2. Averaged Eulerian carrier-phase equations

The averaged Eulerian carrier-phase equations are given by the
two-fluid theory [10,11]. The specific form of these equations is
taken from Pai and Subramaniam [13]. For CFD spray simulations
using averaged carrier-phase equations that account for two-way
coupling and do not assume a dilute spray, the Eulerian mean
mass conservation equation is

K] I =1 _
O =0 (ol = 1)) - () 1o

where oy = (If) is the average fluid volume fraction, and the phase-
averaged mean velocity in the gas-phase is given by

(0 = 1w, (1)

In Eq. (16) the source term due to interphase mass transfer is

<s},f)> - <p(u,-—ul.<')) %> (18)

The Eulerian mean momentum conservation equation is

s =)0 1) ()

_ 0 D AWRAY))
_axj<’frﬁ )+ (liebi)+ (S, (19)
where <S,(5,2) is the interfacial momentum source term given by
ON _ (oo (s — gy 9l
(s = <P”1 (U =U") &~ iy, ) (20)

The so-called “dilute approximation” to these equations that
neglects the volume displaced by the presence of the dispersed-
phase particles or spray droplets is often used [21]. It is obtained
by setting o= 1 in the above equations and neglecting the volume

fraction of the dispersed phase. For example, in this notation the
simplified mass conservation equation [21] reads

Wew (u(1) - (&), 2

where pf = af(plly = 1) (in implementations for dilute flows
[21,22] «af is set to unity, so the bulk or apparent gas density is
simply the thermodynamic gas density).

However, there is another assumption implicit in this “dilute
approximation” to the mass conservation equation that is worth
noting. The proper simplification of the mean mass conservation
equation in the dilute limit is not obtained by simply setting af= 1
in Eq. (16), but by first expanding the terms and rearranging to
obtain

B S(f) =~
%Jrv-(pf@m» = <(jf>pf L?tln af} (22)
where
%E%Jr <ﬂ<f)>~V.

Even in dilute sprays the effect of large gradients in the volume
fraction at the edge of the spray can result in significant contribu-
tions from the term in In o5, and therefore this term needs to be
quantified in spray calculations. Clearly, the assumption of af = 1
only validates the simplification (S/(,f)) fof= (S,()f) ). Apte etal. [85] and
Ferrante and Elghobashi [86,87] have developed LE simulations
that account for volume displacement effects.

3.4. Interphase transfer terms

The source terms ((Sf,f)> and (S,(\f,?)) that appear in the Eulerian
gas-phase-averaged equations (cf. Egs. (16)—(20)) couple the
dispersed-phase to the carrier phase, and are opposite in sign to
their counterparts in the dispersed phase:

<5§f)> = —<5§d)> (23)

) (d)
<SM1'> = _<SM1' > (24)
Their counterparts in the dispersed phase can be expressed as
integrals with respect to the ddf, and the relations are [13]

<5§)d)> =0y pq {3<Q‘x;t>+<®’x,r= 0+;t>f,§(r:0+|x;t) }v
(25)

where Q = O/R and the volume-weighted average of any smooth
function Q(v,r) is defined as:

-\ _(R*Q)
()= 29

with

Q)= / Q(v,Nfgr(v,rx;t) dvdr, r>0. (27)
vl

Details can be found in Ref. [13].
It is convenient to decompose the interfacial momentum source

term <S,(\Z>) into two parts, one attributable to interphase mass
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transfer arising from phase change <Sl(\',1,)(P Q), and the other to the

interfacial stress (S,(\ff(ls)), which is nonzero even in the absence of
interphase mass transfer. These are defined as:

(sui")= <pUi (uy-u?) 2§g> (28)

al
SN = <7;.._d>. (29)
< Mi > ﬂan

The momentum source due to interfacial stress can be expressed
in terms of the dispersed-phase Lagrangian description as

<51(\3,?(IS)> = gy <Ai>7 (30)

while the momentum source due to phase change can be written as:
d)(PC U6
<51(V1j)( )> = Qg pqg {3<VJQ x;t>

+<\7j6 X, = O+;t>f,§(r — 0.|x; t)}. (31)

Detailed derivation and discussion of these terms can be found
in Ref. [13].

3.5. Dispersed-phase mean equations: mass and momentum
conservation

The ddf evolution equation implies an evolution of mean mass
and momentum in the dispersed phase. If a constant thermody-
namic density of the dispersed phase pq is assumed, then the mean
mass conservation equation implied by the ddf evolution equation
is obtained by multiplying Eq. (10) by (4/3)mr’pgq and integrating
over all [v,r] (r, is simply the region of radius space corresponding
to r > 0), to obtain:

at 3% ) 1]+ g 37(R) (Vo
- 3 () 3(afe) =)
+ <(:)’x,r = 0+;t>f§(r = 04|x;t) }

The source term on the right hand side of Eq. (32) contains two
parts. One part corresponds to a loss of mean mass due to vapor-
ization. The other part represents the depletion of number density
due to a flux of droplets across the r = 0, boundary, which corre-
sponds to the smallest radius below which a drop is considered
evaporated.

The mean momentum conservation equation implied by the ddf
evolution equation Eq. (10) is obtained by multiplying Eq. (10) by
(4/3)7rr3pd1/j and integrating over all [v,r, ]:

s 5l ) ()] g s ) )
- g () (o) +ngmas (){3( 12
+<\Z@

where mass-weighted averages have been used as in Eq. (32). The
last term on the right hand side of the above equation corresponds

g

X, T = O+;t>f,§(r = 04|x; t)}. (33)

to a loss of mean momentum due to vaporization, and the depletion
of mean momentum due to a flux of droplets across the r = 0,
boundary.

Substituting Eq. (32) into Eq. (33) results in:

ot K oxy
= ngnpd <R3><Aj’x; t> —Wak lngm)d <R3><y]’/(dr):;:(d)>}
+n%ﬂ'pd <R3>{3<\7j§ x;t>
+<\7j@ X,r = O+;t>f,§(r = 0,x; t)}

- () {3(75) 0t

+<VJ><®”” = 0+%f>f§(r = 04 [x; t)}. (34)

ng'rtpd<R3>{a<Vj> ny a<‘7j>}
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(R3(x,t))

When constructing models for terms such as interphase mass,
momentum and energy transfer, it is useful to model the
Galilean-invariant (GI) forms of these terms because such models
are then frame-invariant with respect to Galilean trans-
formations. A Galilean transformation consists of transforming
position and time as X* = x + Wt and t* = t, respectively, where
W is a constant translational velocity. If a quantity Q is Galilean-
invariant, then Q(x".t") = Q(x,t). The velocity transforms as
U(x",t") = U(x + Wt,t) = U(x,t) + W and is not Galilean-invariant.
If the non-GI forms are modeled, then the resulting models may
not be frame-invariant.

The following are GI combinations of unclosed terms:

{ () - (v (@) .

and

{(5her - 0.t} - (v)(0lxr - 0.1) .

Particle method solutions to the ddf equation that model
(A|x,v,r;t) and (®|x,v,r;t) automatically guarantee GI modeling of
the above terms in the mean momentum equation.

dv dr.

3.6. Second moment equation

The second moment of particle velocity leads to the granular
temperature in gas—solid flow, and it is similarly defined for
droplets as well. In order to derive the second moment equation in
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the LE approach, it is useful to first define the volume-weighted ddf
of fluctuating velocity g(x,w,r,t) defined as

gX,wW,r,t) = f(x7 <\7‘x; t> +W,T, t) = r’f(x,v,r,t) (35)
= <R3(x; t)>n5(x; t) ff,R<<V‘x; t> +w,r‘x; t) (36)
= (RP(x:0) )ns(x: ) & (W, rix: o), (37)

where
wW=v-— <\~I‘x; t>,

where g°(w, rx;t) is the r>-weighted or volume-weighted pdf of
fluctuating velocity.

The evolution equation of g can be derived from Eq. (10) (see
Appendix A for a derivation):

e+ (1) +m) g

- Wkaavgv,ag;:f> _aiw, [<Al|st,T; t>g—ga<a‘i’>—g<\7k> 8<V’>]

D OX V.1 0E) 3@ V0
(38)

The second moment or dispersed-phase Reynolds stress equa-
tion can be obtained by multiplying the g evolution equation by
w;w; (and a factor k = (4/3)7mpy) and integrating over all [w,r | space
to obtain:

an i

a<u;’<5;}/<d>> a<v;’<‘7>:}’<d)>
(e) ()~ o ) e

terms correspond to the net Reynolds stress change due to inter-
phase mass transfer. The terms in the above equation are grouped
in Galilean-invariant combinations.

3.7. Equivalence and consistency between LE and random field
approaches

Establishing the relationships between these two basic
approaches used to formulate the theory of multiphase flows is
important for developing consistent models and can be of practical
use in hybrid simulation approaches [88,89]. A comprehensive
derivation of these relations can be found in Pai and Subramaniam
[13]. In that work a theoretical foundation for the random field and
point process statistical representations of multiphase flows is
established in the framework of the probability density function
(pdf) formalism. Consistency relationships between fundamental
statistical quantities in the EE and LE representations are rigorously
established. It is shown that these fundamental quantities in the
two statistical representations bear an exact relationship with one
another only under conditions of spatial homogeneity. Transport
equations for the probability densities in each statistical repre-
sentation are derived. Governing equations for the mean mass,
mean momentum and second moment of velocity corresponding to
the two statistical representations are derived from these transport
equations. In particular, for the EE representation, the pdf
formalism is shown to naturally lead to the widely used ensemble-
averaged equations for two-phase flows. Galilean-invariant
combinations of unclosed terms in the governing equations
which need to be modeled are clearly identified. The correspon-
dence between unclosed terms in each statistical representation is
established. Hybrid EE—LE computations can benefit from this
correspondence, which serves in transferring information from one
representation to the other.

(d) in(d)
Vi >]

material derivative

(e ey 40

triple velocity correlation

+/<n<R3> <Aiv}'(d)> + <Ajv;'(d)>

production

acceleration—velocity covariance

+Kn<R3> l3<v;/(d)v}/(d)9 X; t> + <v§/(d)v}/(d)® X1 = 0y; t>gf(r = 04[x, t)}

RS change due to mass transfer (1)

en(i8) (9@ ) 3(0x) + (Br = 0.}~ 0.}

(39)

RS change due to mass transfer (2)

In the above equation the material derivative is with the mass-
weighted mean dispersed-phase velocity and the production term
is due to mean gradients in the dispersed-phase velocity. The
fluctuating acceleration—velocity covariance represents the inter-
phase transfer of kinetic energy in fluctuations, and the last two

4. Modeling

The evolution equation for the ddf (Eq. (10)) contains condi-
tional expectation terms (Ai|x,v,r;t) and (O|x,v,r;t) that repre-
sent the average particle or droplet acceleration and average radius
evolution rate, respectively. These are not closed at the level of the
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ddf, i.e., they are not completely determined by the ddf or its
moments alone, since they depend on higher order multiparticle
statistics (cf. Fig. 1) and carrier-phase properties as well. In the more
general form of the ddf evolution (Eq. (11)) that allows for colli-
sions, coalescence and breakup, the corresponding source terms in
the ddf equation that are collision integrals with appropriate
kernels also need to be modeled.

4.1. Modeled ddf evolution equation

The specification of models for the unclosed terms in the ddf
evolution equation results in a modeled ddf evolution equation:

of* 0
g o
ot an

:fcoll Jrfcoal Jrfbw

[vf ]+aTk[Ak(x,v,r,t)f ] +§[® (X,V,1,6)f*] (40)

where Ai(x,vrt), O (x,v,nt) and fzo,,/wa,/bu represent a family of
models for (Ag[x,v,r;t), (Ox,v,7;t), and fcoicoar/bur TESPECtIVELY.
The modeled ddf f*, which is the solution to Eq. (40), is the model
for f implied by these model specifications.

For practical multiphase flow problems the solution to the ddf
evolution equation is coupled to a Eulerian carrier-phase flow
solver [21,29]. Here we primarily consider coupling to a Reynolds-
averaged Navier Stokes (RANS) solver, although many of the
modeling considerations are equally applicable to LES or DNS
coupling as well. The influence of the dispersed phase on the carrier
phase is represented by the addition of interphase coupling source
terms (cf. Section 3.4) to the usual carrier-phase RANS equations (cf.
Eqgs. (16)—(20)). When the gas phase is represented by Reynolds-
averaged fields, a class of deterministic models for the unclosed
terms (A, |X,v,7;t) and (®|x,v,r;t) may be written as follows:

Unclosed term Model

Ax,v,rst) AL ({<Qf(x, t)> },///(f(x, V.1, t))) (41)
O, v,r;t) : O ({<Qf(x, t)>},,///(f(x,v, r, t))), (42)

where the models A; and ®" depend on {(Qs(x,t))} and
A (f(x,v,1,t)). Here {{Qf (X, t)) } represents the set of averaged fields
from the carrier fluid solution (which includes such fields as the
turbulent kinetic energy and mean fluid velocity), and .#(f) is any
moment of the ddf. The dependence on .Z(f) is a general repre-
sentation of the dependence that the modeled terms might have on
quantities like the average dispersed-phase volume fraction density
in physical space, which are moments of the ddf (cf. Eq. (13)).

4.2. Solution approaches

In order to solve a general multiphase flow problem using the
ddf or NDF approach, Eq. (40) for the modeled ddf is to be
numerically solved with appropriate initial and boundary condi-
tions on f*, for a particular specification of the modeled terms Ak, ®*
and the collisional source terms.

4.2.1. Particle methods

For ease of modeling and computational representation of
boundary conditions, a solution approach based on particle methods
is commonly used to indirectly solve Eq. (40) in a computationally
efficient manner [21]. This solution approach is similar to particle
methods used in the probability density function approach to
modeling turbulent reactive flows, a thorough exposition of which is
given by Pope [4]. As discussed in Refs. [66,74], one can associate an

ensemble of N identically distributed surrogate droplets with prop-
erties {(X"O(t), V'), R"0X(¢), i = 1,...Ns(t)}, where X"(t) denotes the
ith surrogate droplet’s position at time t, V*0X(¢) represents its
velocity, and R*(¢) its radius. The properties associated with the ith
surrogate droplet evolve by the following modeled equations:

dx+® .
hunial § 20))

T V (43)
av+® .

— A

T A (44)
dR*(i) i) .
—— =00 i =1, Nt (45)

dt
where A*® is the modeled acceleration experienced by the surrogate

droplet, and ®* is its modeled rate of radius change due to
vaporization.

The correspondence between the surrogate droplets (or surrogate
particles) in the LE simulation and the spray droplets (or physical
particles) is only at the level of the conditional expectations
(AgIx,v,r;t) and (@®|x,v,r;t). Surrogate particles in the particle
method solution to the ddf are not individual physical particles or
spray droplets, even though the drag that a surrogate particle expe-
riences is often modeled as the isolated particle or single-droplet drag.
In fact the correct interpretation is that (Ay|X,v,r;t) is the average
drag experienced by a physical particle or droplet in a suspension, and
that is different from the isolated particle drag since it includes
volume fraction and neighbor particle effects. Conceptualizing
surrogate particles as only being statistically equivalent to physical
particles or droplets gives considerable flexibility in modeling.

The principle of stochastic equivalence (see Pope [4]) tells us that
two systems can evolve such that the individual realizations in each
system are radically different, but the two may have identical mean
values. Therefore, the system of surrogate droplets (or surrogate
particles) may have individual realizations that are vastly different from
those of the physical droplets or particles (obeying non-differentiable
trajectories, for instance), and yet its implied conditional expectation
terms Ay and ®” can match (A, X, v, 1; t) and (®|x, v, r; t) (The principle
of stochastic equivalence [4] also reveals that the mapping of particle
models to A; and ®" is many-to-one, i.e., different particle models can
result in the same A; and ®"). A direct corollary of the stochastic
equivalence principle is that in addition to deterministic particle
evolution models, one can also use stochastic particle models with
random terms in the particle property evolution equations
(Egs. (43)—(45)). The addition of random terms (strictly speaking,
Wiener process increments) to the computational particle position and
velocity evolution results in the appearance of corresponding diffusion
terms (in position and velocity space) in the modeled ddf evolution
equation that now resembles the Fokker—Planck equation [90].

There is another class of models that can be termed particle
interaction models, and they are often encountered in modeling the
collision term. In these models the surrogate particles within an
ensemble may interact. A common misconception in Lagrangian
modeling is the assumption that the surrogate particles (or their
computational counterparts discussed in Section 5) contain accurate
two-particle information. Of course this is not the case if they only
correspond to the droplet ensemble at the level of the conditional
expectations (Ai[x,v,r;t) and (®[x,v,r;t). In order for correspon-
dence at the level of two-particle statistics, the surrogate particles
would need to match the unclosed terms in the evolution equation
for the two-particle density, and also match two-particle statistics at
initial time. Another undesirable feature of particle interaction
models is that they can develop unphysical correlations over time
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[91] due to repeated interactions with neighbors in the same
ensemble. Stochastic collision models do not suffer from this
drawback [92], and it is easier to ensure their numerical conver-
gence. Besides, the modeling assumptions at the two-particle level
appear explicitly in stochastic models. Therefore, even for the
collision term it appears that stochastic models are more promising.

4.2.2. Solution of moment equations

Recently Fox et al. [16,17,93] have developed a quadrature
method of moments (QMOM) approach to solve the moment
equations implied by the ddf in an accurate and efficient manner by
discretizing the ddf or NDF in terms of a sum of é-functions at time-
varying abscissa locations with corresponding weights that also
evolve in time. This approach is able to successfully represent the
crossing of particle jets that is not captured by standard approaches
that directly solve the moment equations. By respecting the hyper-
bolic nature of the collisionless ddf equation, the QMOM approach is
able to accurately capture ‘shocks’ in the dispersed phase and
nonequilibrium characteristics of the velocity PDF (whereas
moment closures based on KT of gas—solid flow often rely on near-
equilibrium assumptions). Results for spray [94] and particle-
laden flows [17] obtained using this approach are very promising.

4.3. Modeling challenges

One of the difficulties in developing LE sub-models for average
acceleration or rate of radius evolution is that these sub-models
interact with each other in a realistic multiphase flow simulation.
Therefore, it is virtually impossible to isolate the effect of a sub-
model and truly assess its performance in a realistic multiphase
flow simulation. For this reason, attempts to improve multiphase
flow models using such realistic multiphase flow simulations tend
to be inconclusive. However, multiphase flow simulations using
a combination of sub-models can be useful in determining the
sensitivity of overall multiphase flow predictions to variations in
specific sub-models (see for example, the sensitivity study by van
Wachem et al. comparing two-fluid sub-models in fluidized bed
test cases [95]), and may serve to prioritize modeling efforts for that
particular application. It should be noted that this sensitivity is of
course highly application-dependent.

Another approach is to test and improve sub-models in an
idealized test case using a higher fidelity simulation such as DNS
that is believed to be closer to the ‘ground truth’. Such an approach
can be very useful in assessing a sub-model’s performance in
isolation (in the absence of interaction with other sub-models), and
for further sub-model development. In the rest of this section, this
approach will be pursued by taking the acceleration model A as an
example to illustrate modeling challenges. The principal modeling
challenges in the LE approach arise from the need to represent the
nonlinear, nonlocal, multiscale interactions that characterize
multiphase flows. The influence of neighbor particles or droplets,
and the importance of fluctuations are also discussed. Nevertheless,
it should be borne in mind that the true test of any sub-model is of
course its predictive capability in a realistic multiphase flow
simulation where it interacts with other sub-models.

4.3.1. Nonlinearity

One of the principal difficulties in modeling the conditional
mean acceleration (Ay|X,v,r;t) term is its dependence on particle
velocity.® This nonlinearity is evident in the standard drag law for

6 Note that the conditional acceleration appears inside the velocity derivative in
the ddf evolution equation, whereas in the KT of molecular gases the acceleration is
independent of velocity and can be taken outside the velocity derivative.

isolated spherical particles, drops or bubbles [96]. The other source
of nonlinearity is the dependence of the conditional mean accel-
eration on the dispersed-phase volume fraction. DNS of steady flow
past fixed assemblies of monodisperse, spherical particles based on
continuum Navier—Stokes equations (for example, the DNS
approach called Particle-resolved Uncontaminated-fluid Reconcil-
able Immersed Boundary Method (PUReIBM)) as well as the Lattice
Boltzmann Method (LBM) have been useful in developing drag laws
that incorporate this volume fraction dependence (see Fig. 5). Some
LE simulations [21] use an isolated particle drag correlation for even
up to 10% volume fraction on the basis of the flow being dilute.
Fig. 5 shows the dependence of the normalized average drag
force F experienced by a particle in a suspension, on solid volume
fraction ¢, at a mean slip Reynolds number Re;;, =|(W)|(1 — ¢)D/v¢
equal to 100. Here (W) is the mean slip velocity, D is the particle
diameter, and vy is the fluid kinematic viscosity. The average drag
force is normalized by the Stokes drag experienced by a particle at
the same superficial velocity (1 —¢)(W)|, such that
F = m(A)/3musD(1 — ¢)|(W)|, where pus is the dynamic shear
viscosity of the fluid. The solid black line in Fig. 5 (whose scale is
indicated by the y-axis on the right) gives the departure of this
average drag force from the isolated drag law (¢ = (F — Fiso1) /Fisol)-
It is seen that this departure is nearly 100% at a solid volume
fraction of 0.1. The dependence of drag on volume fraction is given
by the computational drag laws proposed by various authors
[40,79—81]. For example, the following PUReIBM drag law [40]

Fiso(Rem) | 5.81¢ $1/3
F(o,Rem) = +0.48
( ¢ ) (1 — ¢)3 (1 — ¢)3 (1 _ ¢)4
3
*R m| 0.95 M)7 46
+ ¢ Re ( + 47 (46)

is quite easy to implement in LE codes. In the above equation
[40], Fisoi(Rem) is the drag on an isolated particle given by the
Schiller—Naumann correlation [97]. The dependence of drag on
volume fraction is also directly implicated in the growth of insta-
bilities in the dispersed-phase volume fraction [9]. The nonlinear
dependence on volume fraction also manifests itself in the inter-

phase momentum coupling term «gpy (A;) (cf. Eq. (30)).

4.3.2. Nonlocal effects

The lack of scale separation in multiphase flows (cf. Fig. 4) that
was illustrated by showing that mean fluid temperature may vary
on scales comparable to the mesoscale spatial structure of particles
has implications for modeling. The form of the models given by Eqgs.
(41) and (42) is local in physical space, i.e., the modeled term at x
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Fig. 5. Variation of average drag force experienced by a spherical particle in a mono-
disperse suspension as a function of solid volume fraction ¢. The Reynolds number
based on the mean slip velocity is 100.
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depends only on f and (Qy) at the same physical location x. Models
that are local in physical space are strictly valid only if the char-
acteristic length scale of variation of mean quantities (macroscale
denoted by %macro) is always greater than a characteristic length
scale Qmeso associated with the particles or droplets (micro- and
mesoscales). This is because if scale separation does not exist and
Qmeso ~ Lmacro. then surface phenomena such as heat transfer and
vaporization occurring at a distance 2meso from the physical location
x would affect the evolution of mean fields at x. Nonlocal models
have been developed for the treatment of near-wall turbulence
[98,99], but current multiphase flow models are all of the local type
given by Eqgs. (41) and (42).

4.3.3. Multiscale effects

The presence of a wide range of length and time scales in both
the carrier and dispersed phase poses a significant modeling
challenge in multiphase flows. The nature of these interactions is
illustrated using the acceleration model as an example.

4.3.3.1. Carrier phase. Turbulence in the carrier phase results in
a range of length and time scales. In fact, even laminar multiphase
flows can exhibit significant levels of pseudo-turbulent velocity
fluctuations with a range of length and time scales, as recently
shown by DNS of Tenneti et al. [100]. The density difference
between the dispersed and carrier phases results in the dispersed-
phase particles or droplets having higher inertia than fluid material
volumes or eddies of the same size. Therefore, dispersed-phase
particles or droplets may interact dynamically and exchange
momentum with fluid eddies that are much larger in size. The
particle or droplet momentum response time can be used to
calculate the size of a turbulent eddy in the inertial sub-range with
the same eddy turnover time. This in turn can be used to define
a range of eddy length scales with which the dispersed phase may
interact dynamically. It should also be noted that the particles or
droplets may not exchange momentum over the same time scale
with eddies of all sizes in the carrier fluid turbulent kinetic energy
spectrum. These observations motivate the development of mul-
tiscale interaction models for particle or droplet acceleration.

4.3.3.2. Dispersed phase. Particles or droplets can preferentially
concentrate [101—103] in turbulence, and also organize into clus-
ters and streamers in fluidized bed risers [104,105] depending on
the nature of the particle-fluid and interparticle interactions
(inelastic collisions, cohesion, electrostatics). This introduces
a range of length (and time) scales in the dispersed phase, that can
range from macro to meso to microscales as discussed in Section
2.4.3 (cf. Fig. 4). Clearly, momentum transfer between the carrier
and dispersed phases is a mutiscale interaction.

At the microscale, the acceleration experienced by individual
particles can be affected by their being deep inside a cluster, or in
a relatively isolated location. Preferential concentration of O(1)
Stokes number particles in low vorticity regions of turbulent flow
leads to the formation of mesoscale structures. It is also reported
that the average drag experienced by the solid phase can depend
significantly on the presence of clusters [108]. It follows that the
interphase source terms in the carrier phase that represent
momentum coupling should also account for this multiscale
interaction.

4.3.4. Effect of neighbors

While it is intuitively clear that the effect of neighbors will
become important with increasing dispersed-phase volume frac-
tion, the effect of neighbor particles or droplets on interphase
interactions has been difficult to quantify. In the absence of
conclusive data these interactions are usually neglected for flows

with dispersed-phase volume fraction less than 10%. Chiu et al. [75]
have developed models to incorporate neighbor droplet or particle
effects, but their accuracy is difficult to establish in the absence of
validation data. It was already noted (cf. Fig. 2(d)) that recent DNS
of scalar transport in steady flow past fixed particle assemblies
show that scalar contours surrounding neighbor particles can
interact even at 1% volume fraction. The first-order effect of
neighbor particle interactions can be captured by incorporating
a dependence of the drag law on volume fraction (which is a first-
order statistic). However, the question then arises whether second-
order statistics such as the pair correlation function that corre-
sponds to the arrangement (or structure) of neighbor particles or
droplets at the same volume fraction can affect interphase transfer
terms.

To address this question we prepared different particle config-
urations, each with the same average number density’ corre-
sponding to solid volume fractions of 0.1, 0.2 and 0.3, but with
a different hard-core distance h, (see Fig. 6). If h. equals the particle
diameter, then the particles can get arbitrarily close until their
surfaces touch, but with increasing h. the particles are forced to be
farther away from each other. Fig. 6(b) shows the dependence of
the average drag force with increasing hard-core distance h, for
three different values of the solid volume fraction. It is seen that the
drag exhibits an increase with hard-core distance normalized by
particle diameter, increasing by as much as 20% as normalized
hard-core distance increases from unity to 1.2 (for volume fraction
of 0.3 in Fig. 6(b)). DNS studies of turbulent flow past clustered and
uniform distributions of particles (at the same volume fraction) [31]
indicate that the interphase transfer of energy in velocity fluctua-
tions is also dependent on the statistical distribution of neighboring
particles.

4.3.5. Importance of fluctuations

It is clear from visual observation of many multiphase flows that
the number of dispersed-phase elements (solid particles, droplets
or bubbles), and the geometric volume associated with them, can
vary significantly in time and space. In a realization of a multiphase
flow we encounter a number N( 7") of dispersed particles (or drops
or bubbles) in a region 7~ in physical space. In general N( 7") is
a random number, although this randomness is not explicitly
accounted for in the kinetic theory of granular or gas—solid flow.
Kinetic theory was originally developed for the description of
molecular gases where this randomness is not significant because
fluctuations are negligible on macroscales owing to scale separa-
tion. Since this scale separation is not guaranteed in multiphase
flows (cf. Fig. 4) it is necessary to account for the randomness in
N( 7). Fluctuations in number, and the importance of second-order
effects, can be assessed through second moment measures of point
fields [67]. It is natural to define the variance of N as

var(N) = <N2> —(N)2,

and the variance captures the effect of fluctuations in N. Fluctua-
tions are closely related to clusters, which is a term loosely used to
describe spatial patterns in particle point fields. Here we investigate
what influence these fluctuations in number and volume have on
particle-fluid interaction that affects (A|x,v;t), the conditional
acceleration of a particle due to hydrodynamic forces.

Fig. 7(b) shows a scatter plot of the locally averaged particle
acceleration F(Vp;w) (which is a random variable that depends on

7 These configurations correspond to an ensemble where the total number of
particles N is a constant.
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Fig. 6. Variation of average drag force experienced by a particle with varying nearest neighbor distance. The solid volume fraction is kept fixed when the effect of nearest neighbor

distance is examined.

the realization) obtained from different measurement volumes V;,
with the corresponding local solid volume fraction (which is also
a random variable denoted ®(Vy;w)) in those measurement
volumes. This scatter is generated from DNS of steady flow past
a homogeneous assembly of fixed monodisperse particles at
volume fraction of 0.2 and at a mean slip Reynolds number
Re,; = 100. The measurement volumes ranged from Vi, = D to
(7.5D)3, and were chosen from different locations in the simulation
domain of length L = 12.5D with 161 particles in the box. The drag
law dependence on volume fraction is shown as a reference value,
but clearly this scatter is not captured by the first-order statistical
description. These fluctuations in number that arise on each reali-
zation of the multiphase flow should not be confused with the
statistical error arising from using a finite number of computational
particles to represent the ddf, which is also a first-order statistical
descriptor. The latter is discussed in detail in Section 5.

These are some of the principal modeling challenges dictated by
the physics of multiphase flows that LE models need to address.
While the focus in this review has been on modeling the particle
acceleration term, similar challenges are faced in the vaporization
and collisional source terms as well. The modeling of collisions,
coalescence and breakup is particularly challenging because the ddf
does not contain two-point information regarding the probability
of relative separation of a pair of droplets (or particles) and their
relative velocity. Therefore, the collisional terms are closed to
obtain a ‘kinetic’ equation following the classical approaches of
Boltzmann and Enskog for the hard-sphere model of a gas.
However, the collisions in multiphase flows are complicated by
inelastic collisions, deformation and coalescence (of droplets), and
the presence of carrier fluid. Quantitative information from DNS
that includes all these effects will be needed to assess current
models and to examine the validity of scale separation implicit in
them. The development of such LE models can be aided by the
following guiding principles.

4.4. Guiding principles

LE models should respect the consistency conditions (cf. Section
3.7) arising from the equivalence between the random field and
point process statistical descriptions, and should be consistent with
the implied moment closures in both approaches (cf. Fig. 1). As such
it is easy to ensure Galilean-invariance of LE models if they are
formulated in the particle method solution, whereas this needs to
be carefully checked in EE models. Finally, all LE sub-models should
be formulated such that they are independent of numerical

parameters. Often LE implementations are not numerically
convergent because the sub-models are formulated by including
numerical parameters in such a way as to preclude an asymptotic
solution in the limit of infinite numerical resolution. If these
guiding principles are followed, then the LE implementation will
have consistent sub-models and numerical convergence of the LE
method can be established.

4.5. Acceleration model

4.5.1. Deterministic acceleration models
The particle velocity evolution equation (cf. Eq. (44))

A" = ddlt = Q;(U} -V)+g (47)
defines a class of Lagrangian models that subsumes the vast
majority of models [21,65,109—111] in the literature. This model is
applicable to solid particles (although it neglects unsteady accel-
eration effects), and is often also used for droplets. Note that in the
case of droplets [114,115] the effect of vaporization [112,113] and
droplet deformation [36,116] could also be important, but these are
not represented in this simple model. In Eq. (47), A" is the modeled
particle acceleration, Uf and V" are the modeled gas-phase and
dispersed-phase instantaneous velocities respectively, g is the
acceleration due to gravity and Qp is a characteristic particle
response frequency.® The particle response frequency depends on
the drag coefficient Cp, which is a function of particle Reynolds
number Re,. Models proposed in literature for Q, (see [21] for
example) can be cast in the following form:

9y = Lf(Rey). (48)

p

where f(Rep) represents a functional dependence of the model for
Cp on Re,. The models in this class differ only in terms of the particle
response frequency model, and the model for the gas-phase
velocity.

This form (cf. Eq. (47)) of the particle acceleration model is based
on the equation for steady motion of a sphere in a fluid under the
influence of only drag and body forces, but it is valid over a wide

8 The superscript ** in Eq. (47), and in the rest of this work is used to denote
modeled quantities, which are only approximations to their exact unclosed coun-
terparts. For example, A" in Eq. (47) is a model for A in Eq. (8).
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Fig. 7. Importance of local fluctuations in number and volume fraction on average particle acceleration: (a) Local measurement volume V,, in DNS of a homogeneous gas—solid flow,
and (b) Scatter plot of locally averaged particle acceleration versus solid volume fraction from different measurement volumes V.

range of Rep. In the case of creeping flow, expressions for particle
acceleration that account for the added mass effect, lift force and
history terms are available (see for instance, Maxey and Riley [117],
Gatignol [118], and Michaelides and Feng [119]). For low values of
the carrier to dispersed-phase density ratio (~1073), Crowe et al.
[120] justify the simplification of the Basset—Boussinesq—Oseen
equation that includes the buoyancy, virtual mass and history
force terms to the steady drag form in Eq. (47). However, recent
experiments [121—123] in oscillatory flows indicate that the history
force can be important even for carrier to dispersed-phase density
ratios as low as 0.1 (corresponding to solid particles in liquid). These
experiments indicate that the history term should be included in
low Reynolds number ( ~ 2.5, based on the velocity of the oscillating
flow) flow for Strouhal numbers between 1 and 20. With increasing
particle Reynolds number the steady drag term eventually over-
whelms the contribution from the history term.

One of the advantages of the LE approach is that it allows a more
accurate description of particle-flow interactions in the Lagrangian
frame (see Michaelides [124] for an excellent historical review) by
considering the history term [125—127], and virtual mass forces
[120]. Vojir and Michaelides [128] used Lagrangian particle simu-
lations to show that history term can be important at high
frequencies (high Strouhal number). However, as Michaelides and
Feng [119] observed, it is the added computational cost of the
history term that has led many to not include it in their study. Li and
Michaelides [129] note that adding the history term to a droplet
force calculation can increase the instantaneous force by 25%, even
though the effect on the time-averaged force is negligible.

Since the carrier phase can be turbulent, the instantaneous gas-
phase velocity is decompolsed into a mean component (Uy)*, and
a fluctuating component u/, which are related by

Ui = (Up) +uf (49)

In the Lagrangian—Eulerian approach, the solution to the aver-
aged Eulerian equations in the gas phase yields a mean gas-phase
velocity (Uy)* while the fluctuation in the gas-phase velocity u}* is
modeled. Together the mean and fluctuating gas-phase velocities
form a model for the instantaneous gas-phase velocity Uj.

It should be noted that in their calculations of turbulent particle-
laden flow using Lagrangian point particles (PP-DNS()), Elghobashi
and Truesdell [34,130,131] included the forces in the Maxey and
Riley equation [117] due to fluid pressure gradient and viscous
stresses, virtual mass, history and buoyancy effects, in addition to
the steady drag term, to ensure accurate computation of transient
forces along particle trajectories. This equation is valid only under

the restrictions given by Lumley [132], the principal one being that
the particle Reynolds number based on the fluctuating fluid
velocity should be less than 0.5. Elghobashi and Truesdell [34]
found that the history term is always around one order of magni-
tude smaller than the steady drag term (the other terms are much
smaller by orders of magnitude), and its inclusion changes the
Lagrangian particle autocorrelation time scale by 3.8%. However,
a recent analytical study of particle motion in harmonic Stokes
flows by Coimbra and Rangel [133] reports that for particles smaller
than the Kolmogorov scale of turbulence, virtual mass effects
cannot be modeled using the Maxey and Riley equation [117] for
any fluid-to-particle density ratio much different than unity. They
also note that the restriction of particle size being smaller than the
Kolmogorov scale implies small dimensionless frequencies, or in
other words, only particulate flows in the steady Stokes regime
satisfy the Kolmogorov length scale restriction. Their conclusion
that the history term can be important if the particle radius is not
several orders of magnitude smaller than the Kolmogorov scale
confirms the findings of Elghobashi and Truesdell [34,130,131]. For
non-neutrally buoyant particles, in addition to steady and unsteady
contributions to the drag force, the steady and unsteady contribu-
tions to lift can be important [134,135].

The following particle acceleration A* model belongs to the
general class of Lagrangian models considered here (cf. Eq. (47)),
and is widely used in many LE implementations [21,22]:

ave _ Eﬂ_f’<”f>*+“}* -V

dt  8pq4 Rp <<Uf>*+u}* —V*)C-D—l—g, (50)

where Ry, is the radius. The drag coefficient Cp is given by,

24 Re;”
Cp = R—ep 1+ 3 Rep < 10007 (51)
0.424 Rep > 1000
where the particle Reynolds number
20| (UF) +u — V7[R,

Ky

and yy is the dynamic viscosity of the gas. From Eq. (50) one can
infer the instantaneous particle response frequency Qp as
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4.5.1.1. Models for fluctuating gas-phase velocity. Turbulence in the
gas phase is usually represented by a k—e model. This means that in
addition to the mean momentum equation in the carrier gas (Eq.
(19)), the evolution for the turbulent kinetic energy (TKE) krin the
fluid phase, and its dissipation rate & is solved for. The form
proposed in Refs. [21,22] is widely used. Han and Reitz [136]
implemented the RNG k—e model in LE simulations, which is
a more sophisticated single-phase turbulence model. However, the
principal issue in the context of LE simulations is the development
of multiphase turbulence models that address the modeling chal-
lenges unique to multiphase turbulence, such as the interphase
transfer of TKE. Two-way coupling between the phases requires
extension of simpler one-way coupled models [137].

The fluctuating gas-phase velocity u}* is usually sampled from
a joint normal probability density with zero mean and covariance
equal to (2k;/3)d; under the assumption that the turbulence is
isotropic. This velocity is kept constant over a time interval, called
the turbulence correlation time, which is taken to be the minimum
of an eddy traverse time tg and an eddy life time tg. At the end of the
time interval the renewal time is reached, and a new value of fluc-
tuating velocity u}* is sampled. This is intended to capture the effect
of crossing trajectories as a particle shoots across successive eddies.
Such models for the fluctuating gas-phase velocity are commonly
known as eddy life time models (ELT). Brown and Hutchinson [110],
and Gosman and loannides [111] used a linearized form of the
equation of motion of a droplet to arrive at an eddy traverse time
tg = —71pIn (1.0 — le/(1p|Uf — V7)), where the characteristic length

scale of the eddy Il = C;/Zk?/z/ef. They also proposed a model for

the eddy life time as tf = le/\u}*\. Ormancey and Martinon [109]

proposed that the time intervals over which u}* remains constant
be exponentially distributed (Poisson model), with the mean time
interval equal to the Lagrangian integral time scale of turbulence Tj.
The KIVA family of codes [21] uses a model similar to Hutchinson'’s

but with tr = ke/ey and tg = Gps(k}/?/ep)|(Up)" +ur — V7|7,

where Cps is a model constant equal to 0.164 (= Cg“).

The foregoing discussion applies to turbulent carrier flow with
dispersed-phase particles or droplets that are smaller than the
Kolmogorov scale of turbulence. As was noted earlier, even laminar
multiphase flows can exhibit significant velocity fluctuations in the
carrier phase merely due to the presence of dispersed-phase
particles [100] or droplets. The physical mechanisms for these
fluctuations are completely different in the two cases, and the
modeling of these pseudo-turbulent velocity fluctuations in the
latter case is still in its infancy.

4.5.2. Decomposition of acceleration model into mean and
fluctuation

It is useful to decompose the acceleration model A* into mean (A)*
and fluctuating A™* contributions, because this identifies the implied
models for mean interphase momentum transfer and interphase
transfer of TKE (cf. Eqs. (33) and (39)). It also reveals that the Lagrangian
acceleration model implies a modeled evolution equation for the
second moments of dispersed-phase velocity and the Lagrangian
(temporal) velocity autocorrelation of the dispersed-phase. The model
predictions of these quantities can be compared with DNS results to
assess and improve the Lagrangian acceleration model.

For simplicity if we consider a statistically homogeneous
multiphase flow with no interphase mass transfer, then the particle
velocity evolution equation (Eq. (47)) can be rewritten as

dve  d(v)*  dv*

ac ~ dr " dre

(54)

with

=L = (A (55)

dv/*
dt

A model for acceleration of the dispersed phase implies an
average interphase transfer of momentum between the dispersed
phase and the carrier flow. The evolution equation for the particle
velocity implies a modeled evolution equation for the ddf of fluc-
tuating velocity (cf. Appendix A) and the second moment of fluc-
tuating velocity Eq. (39). Fluctuations in the modeled velocity imply
an evolution of the dispersed-phase turbulent kinetic energy that is
governed by the acceleration—velocity covariance (A”v™) in
statistically homogeneous flows. The deterministic model in Eq.
(56) implies an acceleration—velocity covariance model (A"v’*) in
terms of a ‘fluid-particle’ velocity correlation (u}*v/*) [9,138]. While
this single-point ‘fluid-particle’ velocity correlation may admit
some coarse-grained interpretation, it does not exist in any
multiphase flow with finite-sized droplets or particles because fluid
and particle cannot coexist at the same physical location at the
same time instant [65,139]. Stochastic models for the particle
velocity increment offer a promising route to remedy this problem.

— A”. (56)

4.5.3. Stochastic models

Evidence from DNS of gas—solid flow also suggests that
stochastic models for the particle velocity increment might repre-
sent particle acceleration statistics more faithfully than determin-
istic models. Statistical variability in particle acceleration, as
characterized by scatter plots of particle acceleration and particle
velocity in Tenneti et al. [15] and of particle acceleration and solid
volume fraction in Fig. 7(b), suggest that a stochastic model is more
capable of capturing the physics of multiphase flow than the
deterministic model already discussed.

Stochastic models are written in terms of the particle velocity
increment, such as the following Langevin model [90,100]:

dvi = —B(W;)dt — yvj*dt + Bd7;, (57)
where dVf is the increment in the particle velocity, v}* is the fluc-
tuation in the particle velocity and d7"; is a Wiener process
increment. Fluctuations in the particle velocity are defined about
the mean particle velocity, i.e. v]’»* = V& — (V;)". The first term on the
right hand side of Eq. (57) accounts flor the effect of the mean slip
velocity. The mean slip velocity, defined as (W) = (V)" — (Uy)", is
the relative velocity between the solid phase mean velocity and the
fluid-phase mean velocity. The second term in Eq. (57) accounts for
the fluctuation in particle velocity and the last term models the
effect of hydrodynamic interaction with neighboring particles. The
coefficient vy is the inverse of the Lagrangian particle velocity
autocorrelation time. It quantifies how long a particle retains
memory of its initial velocity. These coefficients are functions of
volume fraction (¢), mean flow Reynolds number (Re;) and particle
to fluid density ratio (pp/ps). DNS of freely evolving suspensions
where particles move under the influence of the surrounding fluid
and interparticle collisions can be performed using the DNS
methodology to extract a functional form for the Langevin model
coefficients [100].
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4.5.4. Mean momentum transfer

The nonlinear dependence of particle acceleration on particle
velocity is fully represented in the LE model (cf. Eq. (50)). The
interphase mean momentum source term in Eq. (20) corresponding
to the LE acceleration model given by Eq. (50) can be calculated
using Eqs. (24), (26), (27) and (30). It is noteworthy that the time
scale associated with the mean acceleration (A)*/(V)" is not the
reciprocal of

(05) = 3w<\<Uf>*+"}* -V

8 g Rp CD>’

but represents a weighted integral over the distribution of all
particle response time scales.

4.5.5. Dispersed-phase velocity fluctuations

Here we first consider the case of dispersed-phase particles or
droplets smaller than the Kolmogorov scale of carrier flow
turbulence evolving in a dilute flow with elastic collisions (or
negligible collisional dissipation). Pai and Subramaniam [14]
showed that one of the drawbacks of the acceleration model
given by Eq. (50) is its inability to reproduce the trends in decay of
velocity fluctuations with Stokes number that are observed in PP-
DNS of homogeneous turbulent two-phase flow [65]. This is
because the acceleration model implies an equation for the trace
of the second moment of the dispersed-phase velocity fluctua-
tions that evolves on the particle or droplet response time scale
= 2de§/9uf. In reality, particles or droplets respond differently
to gas-phase turbulent eddies depending on the ratio of the
particle or droplet response time to the eddy turnover time. Pai
and Subramaniam [14] proposed a different model for the droplet
velocity fluctuation v"*

dv u}* _ v
dv _ 7 58
dt = (o) (>8)

that evolves on a multiscale interaction time scale ().

4.5.5.1. Multiscale interaction timescale model. In the spectral
description of particle—turbulence interaction, a dispersed particle
interacts with a range of eddies which in turn corresponds to
arange of wavenumbers in the fluid-phase TKE spectrum. One may
define a Stokes number St; as the ratio of the particle response
timescale 7, to the timescale 1, corresponding to the eddies of
wavenumber k. Some eddies (say, type A) in this range have
a timescale such that St; > 1, while the others (say, type B) in this
range have a timescale such that St; < 1. The particle responds
immediately to eddies that have a timescale such that St < 1, while
it responds slowly to eddies that have a timescale such that St > 1.
In the former case, the timescale for interphase TKE transfer is
influenced more by the timescale corresponding to the eddies with
wavenumber k, while in the latter case the timescale for interphase
TKE transfer is influenced more by the particle response timescale
7p. Thus, the effective timescale for particle—turbulence interaction
is obtained by integrating the effects of the two wavenumber
ranges identified above, over the energy spectrum of fluid-phase
turbulence in the two-phase flow. The multiscale interaction
timescale (1;,;) presented here is a single-point analogue of the
above spectral model.

Let u}* be a model for the Eulerian gas-phase velocity fluctuation
in Eq. (49) (an example is given in Eq. (64)). If z is the sample space
variable corresponding to the random variable Z = |uj’c*\, the mul-
tiscale interaction timescale (tj,) is given by

o ‘U‘V
) = [ 2 = 2@z + [ a2 (59)
[ulf 0

where f(z) the pdf of Z. The conditional mean (t;,¢|z) is given by
(Tinel2) = Sti(p —7) + 7 (60)

for [ulf < \u}*\ < oo, while (tj|z) = 1p for 0 < |u}*| < |u|'. Here,
a Stokes number valid in the inertial range is given by

St = 2, (61)
T

where 71; is computed as
|u}*|2
f
In order to complete the specification of the multiscale inter-
action timescale, the pdf of \u}*\ isrequired. Using Eq. (64) the pdf of
uf can be computed directly from the solution. However, if uf" is
assumed to obey a joint normal distribution with zero mean and

covariance g#0;j, where g = (2/3)krand d;; is the Kronecker delta as
is done in recent studies [14,141], then the pdf of Z = |u}*| is

7= (62)

f2(2) = \/% 01—322exp (—22/20f2>. (63)
i

As noted above, Eq. (62) is based on an inertial sub-range scaling
where eddies have a characteristic length scale I. The Stokes
number St; defined in Eq. (61) using the characteristic length scale
is the single-point analogue of Sty. For a value of St; > 1, the particle
responds slowly to the eddies and the timescale of energy transfer
is influenced more by the particle response time 7,. On the other
hand, if St; < 1, the particle responds immediately to the flow, and
the timescale of energy transfer is influenced more by the
eddy turnover timescale t. Thus, the pdf of \u/*| for a Gaussian
uf “(see Fig. 8) can be divided into two regions: one that represents
St; > 1, and the other that represents St; < 1, with |u|! representing
the transition between the two regions at St; = 1. Thus, |u/f is
uniquely determined by the relation (ju|")? = Tpéf.

1z

St;>1
s

0 0.1 0.2 0.3 0.4 0.5

Fig. 8. A schematic probability density function of [uj*| that is used in the derivation of
the multiscale interaction timescale (t;,;). The sample space variable corresponding to
\u}*\ is z.
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It is interesting to note that Eq. (59) has the correct behavior for
limiting values of St;and |u|". In the limit [u|" — 0, there are no eddies in
the system with St; > 1. The dispersed particles are simply convected
by the flow and the correct timescale for interphase TKE transfer in
this limit is . In the limit |u’ — o, practically all the eddies in the
system satisfy St; > 1, which implies that there are no eddies energetic
enough to convect the particles. The correct timescale for interphase
TKE transfer in this limit is the particle response timescale 1.

The multiscale interaction time scale model as implemented in
the LE framework by Pai and Subramaniam [14] correctly repro-
duces the DNS trends in decay of velocity fluctuations with Stokes
number for homogeneous turbulent two-phase flow with zero
mean slip velocity. Note that this is still a deterministic model that
results in the anomalous ‘fluid-particle’ velocity correlation. A
stochastic version of the same model that incorporates the multi-
scale interaction time scale concept but that does not result in the
anomalous ‘fluid-particle’ velocity correlation is described in the
following section. In a general multiphase flow problem the effects
of inhomogeneous mean flow and gravity introduce additional
phenomena that manifest as anisotropy in the second moments of
droplet fluctuation velocity.

4.6. Position evolution model

The simplest position evolution model is (cf. Eq. (43)),

dx- N
ar c V
but in some works it is modified to include a random term [142].
The justification for adding this random term is to represent the
effect of droplet dispersion due to random motion of the turbulent
eddies. It is well known that adding a random term (Wiener
process increment, to be precise) makes the position evolution
equation (Eq. (43)) a stochastic differential equation (SDE). The
corresponding change to the modeled ddf evolution equation is the
addition of a term representing diffusion in physical space (as in the
Fokker—Planck equation corresponding to the SDE [61,143,144]).

It is well established from analyses of the system of SDE’s that
arise in both turbulent single-phase flows and Brownian dynamics,
that diffusion arises from the effect of velocity autocorrelation. In
the limit of rapid momentum relaxation, the system of equations
can be simplified to a Langevin equation for position [145,146]. The
assumption of fast momentum relaxation is generally not appli-
cable to spray droplets because that would imply that the droplet
velocity distribution relaxes to an equilibrium Maxwellian distri-
bution, which is obviously not true for the strongly nonequilibrium
situation in sprays. Also retaining both the velocity SDE and the
position SDE will result in two sources of diffusion, which in
turbulent single-phase flows can be meaningfully interpreted as
the sum of molecular diffusion arising from the position equation
and turbulent diffusion arising from the velocity equation [144]. A
similar analogy does not exist in the case of multiphase flow. In the
following section, a summary of approaches to modeling particle or
droplet dispersion is presented.

4.6.1. Droplet dispersion

Dispersion of spray droplets and the modulation of turbulence
in the ambient gas by the dispersing droplets are two coupled
phenomena that are closely linked to the evolution of global spray
characteristics, such as the spreading rate of the spray and the spray
cone angle. PP-DNS(®) of turbulent gas flows laden with sub-
Kolmogorov size particles, in the absence of gravity, report that
dispersion statistics and turbulent kinetic energy (TKE) evolve on
different time scales.

Particles with high Stokes number lose energy faster than
particles with low Stokes number in freely decaying turbulence
[65]. On the other hand, particles with high Stokes number lose
correlation with their initial velocities slower than particles with
low Stokes number in stationary turbulence [41,45]. The disparate
behavior of the velocity autocorrelation and TKE time scales affects
the dispersion characteristics of a spray.

Lu [147] uses a time-series analysis involving fluid-phase
temporal and spatial Eulerian velocity correlations to arrive at
a stochastic model for the fluid velocity at the particle location, in
the limit of one-way coupled turbulence. Spray droplet interactions
with the gas phase are, however, strongly two-way coupled.
Nevertheless, testing the behavior of a two-phase model in the
limit of one-way coupled spray configurations is indeed necessary.
Lu reports good agreement between model results and theoretical
results of Csanady [148], and particle-laden grid-generated turbu-
lence results of Snyder and Lumley [149] in predicting particle
diffusion coefficients and velocity autocorrelations. Mashayek and
Jaberi [45] used Lu’s time-series approach to predict particle
velocity autocorrelation functions and asymptotic diffusion coeffi-
cients for non-evaporating and evaporating droplets laden in one-
way coupled stationary turbulence, again reporting overall
reasonable agreement with PP-DNS data [150]. An extension of the
time-series model has been tested by Gao and Mashayek [151] in
compressible homogeneous shear flows with interphase mass
transfer due to evaporating droplets. They report good agreement
of predicted droplet velocity correlations and droplet-fluid velocity
cross-correlations with PP-DNS of evaporating droplets in a low
Mach number turbulent shear flow [44].

Pozorski and Minier [152] modified the Lagrangian integral time
scale in the generalized Langevin model proposed by Haworth and
Pope [153] to arrive at the fluid velocity “seen” by the particles. To
our knowledge, no validation tests are available in the literature
that quantify the predictive capability of this model in canonical
particle-laden flows. Chagras et al. [154] employ a Langevin-type
equation that uses the Lagrangian integral time scale of the fluid
“seen” by the particles and the fluid-phase Reynolds stresses to
arrive at a model for u}. They analyze several cases of two-way
coupled gas—solid pipe flow with large mass loading and report
overall agreement of temperature profiles and instantaneous
velocities with experimental results. Chen and Pereira [155] use an
assumed probability density function (pdf) for the spatial distri-
bution of the particles whose variance evolves in time by an ordi-
nary differential equation containing an assumed fluid-phase
Lagrangian velocity autocorrelation of the Frenkiel form [156]. They
report good match of predicted dispersed-phase velocities from
their two-way coupled simulations with results from experiments
conducted on particle-laden planar mixing layers and co-flowing
planar jets.

With the exception of Mashayek and Jaberi [45], there is no
evidence in the literature of tests conducted with the aforemen-
tioned models in simple canonical two-phase flows (such as
stationary or freely decaying particle-laden turbulence) to test their
capability in simultaneously capturing the energy and dispersion
time scales as observed in PP-DNS. However, the time-series model
[147] used by Mashayek [45] relies on statistics of the fluid phase
that are valid only in the limit of one-way coupled two-phase flows.
Extending the time-series model to two-phase flows with signifi-
cant two-way coupling effects will require the knowledge of the
Eulerian spatial correlation of gas-phase velocity which is a non-
trivial quantity to measure or model in such flows. Also, the
extension of the time-series model proposed by Gao and Mashayek
[151] involves correlations among the velocity components,
temperature and mass fraction, with the assumption that all these
correlations evolve on the same Eulerian fluid integral time scale.
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4.6.1.1. Coupled stochastic model. The coupled stochastic model
(CSM) for homogeneous turbulent two-phase flows [187] consists
of two coupled stochastic differential equations (SDE) for the
modeled fluctuating Lagrangian gas-phase velocity u and fluctu-
ating Lagrangian dispersed-phase velocity v. This model possesses
a unique feature that the implied TKE and velocity autocorrelation
in each phase evolve on different time scales. Consequently, this
model has the capability of simultaneously predicting the disparate
Stokes number trends in the evolution of dispersion statistics, such
as velocity autocorrelations, and TKE in each phase. Predictions of
dispersion statistics and TKE from the new model show good
agreement with published PP-DNS of non-evaporating and evap-
orating droplet-laden turbulent flow.
The proposed system of SDEs in CSM is

1 (1 3 2k
du’*.:——+( C) ufdt + |Coer + 5 —
1 2 273 IJ 1 0 T3,
2 (K~ ks )
+3< 5 dW,» (64)
Sk 1 /* 2kd kd kd 12 v
e = e (3504 2 (55| Cawy, (65)

where 11, 72, 73 and 74 are time scales that appear in the drift and
diffusion coefficients® of each SDE, while dW¥ and dW/ are inde-
pendent Wiener processes [157]. The subscript i denotes the
Cartesian components. The TKE in the dispersed phase is denoted
kq and the TKE in the gas phase is denoted ky, with a superscript ‘e’
to denote their ‘equilibrium’ values (the concept of ‘equilibrium’ is
explained in Refs. [14,141,187]).1° Also, g is the gas-phase dissipa-
tion enhanced by the presence of the dispersed phase. The constant
Co = 2.1, which is identical to that used in the Simplified Langevin
model (SLM) [61]. Mean velocity in either phase, and hence the
mean slip velocity, is assumed to be zero for simplicity, although
this is not an inherent limitation of CSM. The fluid-phase SDE can be
viewed as an extension of the SLM [61,153] to two-phase flows, but
with an important difference being the introduction of drift and
diffusion time scales that are different from each other. Also,
additional terms involving kf and kg (in parentheses) that represent
interphase interactions have been added. The coupling between the
two phases is only through moments of the velocities in each phase
like TKE (krand kg) and the d15$1pat10n ¢, and not explicitly through
the instantaneous values of uf; and vy

Note that for widely used LE models, the interphase TKE transfer
evolves on the particle response time scale 7, which was found to
be inadequate to capture the multiscale nature of particle—
turbulence interaction [14]. The specification of the drift time
scales 71 and 73 in Eqgs. (64) and (65) is summarized here. Detailed
justification for these choices is given in Ref. [158,187]. The speci-
fication for the drift time scale 3 is

1 1 3 1 1
T3 Z{ZH (2 4C°) ?} 1+ St,C3’ (66)

where C3 is a model constant (C3 = 0.1) and 1 = ke is the fluid-
phase eddy turnover time scale. This specification for t3 obeys the
correct limiting behavior in the limit of zero Stokes number

9 The terms ‘drift’ and ‘diffusion’ are used in the sense of stochastic differential
equation theory.

10 The subscript f stands for the gas phase or fluid phase, and the subscript
d stands for the dispersed phase.

(Sty—0), where the droplets respond immediately to the
surrounding fluid and the fluid-phase velocity autocovariance and
the dispersed-phase velocity autocovariance must match. The drift
time scale 7 is prescribed to be

1_Ge

R
where C; is a model constant (C; = 0.5). In the limit of zero mass
loading, the time scale 74, which essentially represents the modi-
fication to the fluid velocity autocorrelation time scale due to the
presence of dispersed phase, should tend to infinity. In this limit the
drift time scale in Eq. (64) approaches the specification for the
single-phase simplified Langevin model [61].

The time scales 73 and t4 govern the evolution of TKE in each
phase, which are

dks ke — kf

dt - T2 - (67)
dk kg — K
=" dr4 d. (68)

In accordance with the ‘equilibration of energy’ concept, and to
introduce the capability to capture the multiscale nature of
a turbulent two-phase mixture into CSM, the time scales 7, and 14
are chosen to be equal to T = (Tj,)/Cr, Where (7j) is @ multiscale
interaction time scale for interphase TKE transfer proposed by Pai
and Subramaniam [14]. It was shown in Ref. [14] that the new time
scale accurately captures the dependence of the interphase TKE
transfer on St;. This time scale has been successfully employed in
the context of EE two-phase turbulence modeling by Xu and Sub-
ramaniam [141]. The constant Cy is chosen to be 2.5.

4.7. Other sub-models

There are many other physical phenomena that are important in
multiphase flows, including heat transfer, vaporization, and colli-
sions. These require sub-models that need to be incorporated into
the LE simulation code. Considerable progress has been made in
modeling these physical phenomena using Lagrangian sub-models.
These sub-models are not discussed here because authoritative
reviews are available for the interested reader. The development of
a predictive LE simulation will require systematic testing of each of
these sub-models using the criteria and guiding principles
described in Section 4.4.

5. Numerical implementation

In LE simulations that are a particle method solution to the
modeled ddf evolution (PP-DNS® and RANS in Table 1), the
ensemble of N surrogate droplets is indirectly represented by N,
computational particles (also called ‘parcels’ in the spray literature).
The number of computational particles N. does not necessarily have
to equal the average number of physical particles or droplets (Ns)
that is represented by the ddf.!" To reduce computational cost N, is
chosen to be smaller than (Ns) (sometimes by even several orders of
magnitude), and the correspondence between the computational
representation and the surrogate ensemble is enforced at the level
of the modeled ddf [107]. This reduction in computational cost is

1 The average number of physical particles or droplets (Ns) is the same in the
physical system and the surrogate ensemble, so we do not distinguish between the
two when it is not necessary.
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accomplished by assigning a statistical weight to the computational
particles, and it is a valid approach as long as the computed solution
converges to the modeled ddf that evolves by Eq. (40).

These N, computational particles are represented in
a Lagrangian frame at time ¢ by a set of properties {X{)(t), V&)(t),
RO, Wi, i = 1,..Ny(t)}, where X{)(¢t) denotes the ith computa-
tional particle’s position, V(Ci)( t) its velocity, R(ci)(t) its radius, and WA
its statistical weight. The statistical weight is defined as the average
number of droplets represented by a computational particle. The
summation of statistical weights over all computational particles
equals the expected total number of droplets

Nc

t)
WO = (Ny(t)). (69)

Il
—_

As already noted earlier, the surrogate droplets (or particles) do
not have to evolve identically to their physical counterparts
because the equivalence of the modeled surrogate system and
physical system is in a (weak [159]) statistical sense (sample paths
do not have to match). Since the N, computational particles effi-
ciently solve the evolution of the surrogate ensemble, they too do
not have to evolve identically to their physical counterparts. If the
statistical weighting is uniform in position, velocity and radius
space, then the computational particles evolve identically to their
surrogate counterparts as given by Eqs. (43)—(45). The position,
velocity and radius of the computational particles evolve by

d%? _ 0 (70)
d;/_t?) _AD _ ) (71)
dgg) _ el — @ (72)
% = —DOWOE), i =1, Ne(t), (73)

where AY) is the instantaneous acceleration experienced by the ith
computational particle, ®! is the rate of change of particle radius
due to vaporization, and w® represents the fractional rate of change
of statistical weight. Note that the statistical weights may evolve in
time, although in traditional LE simulations they do not [107]. In
some LE spray simulations [21] the statistical weight initially
assigned to the computational particle depends on the droplet
radius so as to preferentially sample larger radius drops relative to
smaller ones [21,160]. This procedure is called ‘importance
sampling’ and it is often used solely in the initialization procedure
(as in Ref. [21]), in which case the sampling can degrade in time
[160]. If it is desired that a particular weight distribution be
maintained at all time, then in that case the evolution equations for
the computational particle can differ from their counterparts in the
surrogate droplet ensemble so as to maintain equivalence at the
level of the modeled ddf [161].

5.1. Interpretation of results

Based on the preceding discussion, it is clear that it is not
meaningful to compare scatter plots of computational particles
from a single realization of LE simulation with instantaneous
snapshots of spray droplets or solid particles from spray or particle-
laden experiments because computational particles in the LE
simulation can have different statistical weights. It is only

meaningful to compare moments (e.g., average, covariance) and
other statistical quantities, once numerical convergence of the LE
simulations have been established.

5.2. Numerical convergence

Numerical convergence and accuracy of LE simulations have
been critically examined by many researchers [23,24,162,163].
Accurate calculation of the interphase transfer terms (corre-
sponding to mass, momentum and energy, cf. Egs. (25)—(31)) that
couple the Lagrangian particle representation to the Eulerian gas-
phase equations is crucial for predicting qualitatively correct
physical behavior, as well as for quantitative comparison with
experiments or higher fidelity simulations. One of the principal
differences between numerical convergence of LE simulations and
standard Eulerian CFD simulations is that in addition to the grid
resolution and time step that are numerical parameters common to
both simulations, the number of computational particles N; is an
additional numerical parameter in LE simulations.

In traditional LE (TLE) simulations [48,83,130,164] the dispersed
phase is represented by a fixed number of computational particles.
If a fixed number of computational particles N is used to represent
the dispersed phase on a grid with total number of grid cells M,
then the statistical error in a grid-based estimate of any mean field
quantity increases with grid refinement, resulting in a non-
convergent LE simulation. This is because as the grid is refined,
fewer and fewer particles are available in each grid cell to form the
grid-based mean field estimate. Note that for fixed N, the nominal
number of particles per grid cell N,c = N¢/M decreases as the grid is
refined. Therefore the statistical error, which is inversely propor-
tional to the square root of number of particles per cell, increases.
This increase in statistical error eventually overwhelms the
reduction in spatial discretization error that is achieved by grid
refinement. As a result, the total numerical error increases with grid
refinement leading to non-converged TLE solutions.

The other issue with numerical convergence of LE simulations
pertains to the spatial distribution of computational particles. In
many multiphase flow problems, especially with finite Stokes
number droplets or particles, the spatial distribution of physical
droplets or particles can be highly nonuniform.

Fig. 9 shows the spatial distribution of particles in lid-driven
cavity flow simulation [107] for a Stokes number equal to 0.8. It

Fig. 9. Snapshot of a one-way coupled lid-driven cavity flow simulation at non-
dimensional time tU/L equal to 10. The important flow parameters are Re = UL/
v = 100, St = 1p/tr = 0.8. The solid lines represent the fluid-phase stream function
contours and black dots represent the dispersed-phase particles.
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can be seen that the particles have preferentially concentrated in
regions of the flow field with high rate of strain. Therefore, for finite
Stokes number, the computational particles also preferentially
concentrate just like the real particles. In TLE simulations the
computational particles follow this nonuniform distribution,
resulting in high statistical error in regions populated by few
particles, and solutions that do not converge with grid refinement
[107].

The problem of LE numerical convergence is now briefly
described and solutions to ensure numerical convergence and
accuracy are outlined. For two-way coupled multiphase flows,
accurate calculation of the interphase transfer terms is necessary for
proper representation of the flow physics in an LE simulation. As an
example let us consider the mean interphase momentum transfer
term (F%(x,t)) in Eq. (15) for a monodisperse particle-laden flow,
which needs to be accurately computed from the LE solution, i.e., the
mean fluid velocity field Uf(x,t), and the position and velocity of the
computational particles {X9(t), Vi(t), i = 1,...Ny(t)}. The mean
interphase momentum transfer term (F9(x,t)) at Eulerian grid
nodes is estimated from this solution data in two steps:

1.Calculation of particle forces ﬂi):

This requires calculation of the fluid velocity at the particle
location UY(X{ t) in Eq. (75) from the fluid velocity at Eulerian grid
nodes. The numerical estimate of the fluid velocity field UN(x,t) at
the particle location X! using a representation of U at M grid
nodes is denoted {UN(X{,t)}y, and is obtained through forward
interpolation/approximation as:

(w0}, -

where the fluid velocity at the mth Eulerian grid node is denoted
U, and 7 is a generic interpolation/approximation operation. The
particle force ) is then obtained by substituting {UY(X® £)}y for
UU)(X(C"),t) in a general form of the particle force model that
subsumes different drag force correlations, which reads:

FUH m =1, MXN, (74)

£00) = £(UO X 0.0,V o7, v7.pp. Dy ) (75)

where prand v, is the fluid-phase density and kinematic viscosity,
respectively.

2. Mean interphase momentum transfer Fl(x,t) from particle
forces ft0):

The numerical procedure to calculate the Eulerian mean field
F(x,t) from particle data {X{(¢), £Xt), i = 1,...N¢} is described
variously as mean estimation from particle data, projection of fluid-
particle interaction forces onto the Eulerian grid, or backward
estimation. The numerical estimate for the mean interphase
momentum transfer (F¢(x,t)) at the mth Eulerian grid node is
denoted {Ff¢}, and the general form of its estimate from the particle
data is:

(B} = A{xXP 0w i =1, e}, (76)

where & like .7 is another generic interpolation/approximation
operator.

Numerical error in the interphase momentum transfer calculation
arises from both forward interpolation/approximation of fluid
velocity at grid nodes to particle locations, and from backward esti-
mation of the interphase momentum transfer term at particle loca-
tions to grid nodes. Both forward interpolation [48,165,166] and the

calculation of mean fields from particle data [83,130,164,167—170]
have been studied by many researchers. Garg et al. [106] proposed
and validated a model for the numerical error incurred in calculating
the interphase transfer terms by decomposing the error into statis-
tical, bias and discretization components [106]. They explicitly char-
acterized the total numerical error e in calculating the interphase
force {Ff4} in terms of numerical parameters (grid size M and number
of particles per cell Ny) as:

e = cef | be(M) | ap
Npe | Npc ' MP’

where ap, br and cf are coefficients that characterize the spatial
discretization error, bias error, and statistical error, respectively.
The error model shows that in order to obtain numerically
converged results, it is imperative to simultaneously reduce the
statistical and deterministic error components that result from
backward estimation. The bias and statistical error components
depend on the number of particles per cell. Therefore, numerical
convergence cannot be achieved by grid refinement with a fixed
total number of computational particles because the number of
particles per cell keeps decreasing. This is because the bandwidth of
most numerical schemes scales with the grid spacing.

Garg et al. [106] performed comprehensive tests of numerical
schemes used to calculate mean interphase transfer terms in LE
simulations using a test problem that admits an analytical solution.
This allowed characterization of numerical convergence as well as
accuracy. They demonstrated that with very high number of
particles per cell (100—400), and with multiple independent real-
izations (100—400), the various schemes they tested are indeed
numerically convergent and accurate for the simple static test
problem they devised. Such high numerical resolution is imprac-
tical in LE simulations of realistic multiphase flows, where typical
values for the nominal number of particles per cell Ny in 3D LE
simulations range from 0.0156 to 0.125 in Sundaram and Collins
[65] to exactly 1 in Boivin et al. [48]. In 2D calculations higher Ny,
values have been used: 3—30 in Narayanan et al. [170] and 16—500
in Lakehal and Narayanan [162]. In all but one of these studies
(Lakehal and Narayanan [162]), only one realization is simulated.
Garg et al. [106] found that for realistic resolution using 5 particles
per cell with only one realization, some schemes can give errors as
high as 80% [106]. They also found that alternative numerical
schemes that employ kernel-based estimators to decouple the
calculation of mean particle fields from the Eulerian grid resulted in
total numerical error of only 20% at the same resolution, and these
are briefly described in the next subsection.

5.3. Grid-free estimation

A key ingredient to the solution of the LE numerical convergence
problem is the use of grid-free kernel-based estimators that Garg
et al. [106] adapted from particle methods for PDF-based
approaches to turbulent reactive flows [171,172]. Similar ideas
have been used in collision calculations, such as the ‘collision grid’
concept [26]. The particular grid-free estimator that Garg et al.
[106] used to demonstrate accuracy and convergence in LE simu-
lations is a two-stage estimator (TSE) algorithm developed by
Dreeben and Pope [171]. For forward interpolation it uses a second-
order Lagrange polynomial interpolation scheme that is formally
second-order accurate, and which is essentially a trilinear inter-
polation scheme that is identical to the PNN method [48,130,164].
For backward estimation it employs a grid-free two-stage algo-
rithm. In the first stage, it estimates weighted values of the particle
property (e.g., interphase force) using a linear kernel of user-
specified bandwidth at knot locations that depend on where the
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particles are located. The second stage involves least-squares fitting
of locally linear or quadratic functions to these knot values. The
advantage of this method is that its convergence characteristics are
not tied to the Eulerian grid (in fact it does not need an Eulerian grid
at all!), but by adjusting the bandwidth of the kernel the user can
balance the contribution from truncation and statistical errors.

While kernel-based grid-free estimation reduces statistical
error independently of the grid resolution and facilitates conver-
gence, it does not address the issue of large numerical errors arising
from spatial nonuniformity in the distribution of computational
particles as shown in Fig. 9.

5.4. Improved LE simulation method

The non-convergence of TLE simulations for spatially nonuni-
form particle distributions such as those shown in Fig. 9 for a lid-
driven cavity problem has led to the development of the
improved LE (ILE) simulation method. The ILE simulation uses
a computational particle number density control algorithm which
is similar to those used in various other particle-based simulations
[3,4,172—175]. The computational particle number density control
algorithm ensures a near-uniform distribution of computational
particles during the entire course of simulation. However, as
a result of ensuring near-uniform distribution of computational
particles, the statistical weights now need to be evolved in time in
order to solve the same physical problem. This is achieved by
annihilating (in case of excess) and cloning (in case of deficient)
computational particles in each cell, resulting in nominally equal
number of computational particles per cell at all times [3]. Thus, the
ILE method ensures that the statistical error remains nearly
spatially uniform. The computational particle number density
control procedure relies on the principle of statistical equivalence
between the ILE computational ensemble (with unequal and time-
evolving statistical weights) and the modeled ddf representation of
the physical system.

Analogous to the modeled ddf f'(x,v,r,t) that was defined earlier
for the surrogate droplets, a weighted density function h(x,v,r,t) for
the computational particles is defined as

Net) _ . .
h(x,v,r,t)= < > WX 0)6v -V )6 (r-R (1)) >
i=1
(77)

The validity of using computational particles rests on the
equivalence between h and f* at all time. Statistical equivalence is
ensured by enforcing consistency at all times between

(i) the number density implied by the computational ensemble
and the number density corresponding to the physical system,
and

(ii) the particle velocity distribution implied by the computational
ensemble and the particle velocity distribution corresponding
to the physical system.

The combination of ILE with the kernel-based grid-free TSE
estimator is shown to yield accurate solutions to a two-phase flow
test problem that admits an analytical solution for the mean
interphase momentum transfer term [107]. The same ILE approach
is also successful in maintaining near-uniform computational
particle number density, resulting in a numerically convergent
solution to the particle-laden lid-driven cavity problem [107]. It is
worth noting that with an efficient parallelization strategy based on
domain decomposition, the ILE simulations result in better load-

balancing than the TLE simulations. Therefore, the combination of
ILE with the TSE estimator is shown to be a promising approach to
obtain numerically convergent and accurate results for LE simula-
tion of multiphase flows.

5.5. Summary of LE numerical solution

1. The two major limitations of TLE simulations: (i) increase in
statistical error with grid refinement, and (ii) nonuniform
spatial distribution of statistical error, are effectively addressed
by kernel-based grid-free estimation using TSE, and the ILE
approach that maintains a near-uniform spatial distribution of
computational particles.

2. As noted earlier, numerical non-convergence of LE simulations
often results from LE sub-models that are not numerically
consistent, i.e. such sub-models do not admit a unique solution
to the modeled ddf in the limit of numerical parameters
tending to their asymptotic values because these sub-models
have numerical parameters mixed up with physical parame-
ters. This is easily remedied by appropriately reformulating the
sub-model to ensure it is numerically consistent, and the
modeling deficiency should not be misinterpreted as indicative
of any fundamental difficulty in obtaining numerically
converged LE solutions.

3. Although ILE with TSE results in numerically converged and
accurate solutions for a given particle force model, it does not
address the larger question of what constitutes an accurate
coarse-graining of particle forces from a DNS? For instance,
Moses and Edwards [84] showed that the particle force
computed from DNS is better represented by a doublet, rather
than a point force. It is also not clear whether the pressure field
in the Eulerian representation of the carrier flow is an appro-
priate coarse-graining of the pressure field from DNS.

4. In particle method solutions to turbulent reactive flows
a consistency requirement is imposed at the end of each time
step to reconcile the particle representation to the implied
mean fields [4], whereas the same has not received as much
attention in LE simulations. The decoupled advancement of
Eulerian carrier-phase equations and Lagrangian equations for
computational particle properties over a time step, and any
dependence of the numerical solution on the sequence in
which these equations are advanced, needs to be examined
more closely.

5. Numerical studies of LE simulations reveal that the numerical
schemes used to advance the computational particles can
strongly influence higher order statistics, such as nearest
neighbor distance and pair correlation statistics (of the
computational particles) [176]. This can be significant for LE
simulations that use particle interaction models.

6. The foregoing discussion on LE numerical solution is restricted
to LE with RANS for the Eulerian carrier flow or PP-DNS®) in
Table 1, but other considerations could prevail for the other LE
simulation approaches.

6. Lagrangian—Eulerian simulations of multiphase flow

Selected LE simulations representative of the state-of-the-art
are highlighted in this section. Fig. 10 shows LE simulations (of
type LES?® in Table 1) of a gas—solid flow in the riser section of
a fluidized bed by Desjardins’ group. The gas phase is solved using
an LES formulation with the standard dynamic Smagorinsky sub-
grid model [177]. Particles evolve by a modeled drag law and
interact on contact according to a modified version of Cundall and
Strack’s soft-sphere discrete element model [58]. The Euler—
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Fig. 10. Example of an LE simulation of gas—solid flow showing particles in a riser. The
flow is established by imposing a uniform pressure gradient in the fluid phase in the
vertical direction. The gas phase is solved using an LES formulation while particles
evolve by a drag law and undergo soft-sphere collisions, corresponding to an LE
simulation of type LES® (cf. Table 1).

Lagrange simulation strategy has been validated extensively for the
dense regime [178]. The purpose of this study was to extend the
scheme to dilute flows in fast fluidization environments and assess
its capability to generate particle clustering. Clusters were observed
to fall at the walls at a constant rate, and cluster velocities showed
excellent agreement with experimental correlations [179]. This
simulation uses 1,536,000 grid cells for the gas phase with 266,760
particles and takes approximately 11,520 CPU hours (5 days) on 96
cores.

Fig. 11 shows LE simulations (of type PP-DNS®) in Table 1) of
a droplet-laden mixing layer by Bellan’s group [52]. The gas phase is
solved using a DNS formulation, while the droplets are modeled as
point sources of mass and momentum and energy. Collisions are
neglected because the flow is dilute (volumetric loading is 0(10~3)
and mass loading is 0.2). This simulation uses 288 x 320 x 176 grid
cells for the gas phase with 2,993,630 drops and takes approxi-
mately 2252 CPU hours on 64 processors of an SGI Origin2000.

Results from this PP-DNS of a temporal mixing layer laden with
evaporating drops are compared with PP-LES to assess the ability of
the multiphase PP-LES to reproduce detailed characteristics of PP-
DNS. The PP-LES used computational drops, each of which repre-
sented eight physical drops, and a reduced flow field resolution
using a grid spacing four times larger than that of the DNS. The LES
also used models for the filtered source terms, which express the
coupling of the drops with the flow, and for the unresolved subgrid-
scale fluxes of species mass, momentum, and enthalpy. Different
subgrid models were evaluated. It was found that for this dilute
droplet-laden flow, all LESs captured the largest-scale vortex, the
global amount of vapor emanating from the drops, and the overall
size distribution of the drops. All LESs tended to underpredict the
global amount of irreversible entropy production (dissipation). The
subgrid models differed in their ability to capture the global or local
vorticity variation and in predicting the spatial distribution of drops.

Variants of the LE approach as described in Table 1 have been
developed by many researchers. Notably, Jaberi et al. [174] and
Gutheil et al. [180] have extended the LE approach by incorporating
a particle-based solution for the composition PDF in the gas phase.

7. Extension of the LE approach

As noted in Section 4.3.3, preferential concentration and clus-
tering are important multiphase flow phenomena that need to be
accurately captured by simulations. This can be a challenge for LE
simulations because accurate prediction of preferential concen-
tration requires modeling two-particle statistics that are not rep-
resented in the LE approach (cf. Section 4.3.3).

However, a two-particle statistical theory can be derived from
the point process representation detailed in Section 2.4. Two-
particle statistics have been used by other researchers in sprays
[75], Brownian dynamics simulation [181] and to model coagula-
tion [188]. In order to characterize structural properties of the
dispersed-phase droplets or particles using quantities such as the
pair correlation function, we need to consider the two-particle
density p(z)(x1.x2,v1,v2,t), which is defined as

2)(x]7x27v]7v27t)5<f]/ 2/> (78)

where fif; is the two-particle counterpart of the one-point fine-
grained density in the Klimontovich approach [182]:

-3 z 79 =S 0(x - X003 (vy VO (1))
i=1
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(79)

In the above expression [Xk, Vi, k = 1,2] are the Eulerian coor-
dinates of the position-velocity phase space for the particle pair.
The summation over distinct pairs j#i is necessary for the defini-
tion of the two-particle density, whose integral is the second
factorial measure. If all pairs are included, an atomic contribution
arises in the second moment measure that does not have a density
[71,72]. The ensemble average of the two-particle fine-grained
density function fify is the two-particle density. Integrating the
two-particle density over the velocity spaces results in the unnor-
malized pair correlation function

2 (X1,X,1) = /P(2>(X1,X27V17V27t)dV1dV2- (80)

Substituting Eq. (79) into Eq. (78), and differentiating Eq. (78)
with respect to time results in the evolution equation for the
two-particle density p(x1,Xo,v1,V2,t):

@)
% = _%<V1P<2)> a)a( ( - )
o, (A7 ok v v )0 @
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Introducing the pair relative separationr = X, — X; and the pair
relative velocity w = v, — vy, and assuming statistical homoge-
neity in physical space and velocity space, leads to the following
form for the evolution of the two-particle density

‘x] ,Xo,V1, V3, t>p(2)>.
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Fig. 11. Example of an LE simulation of droplet-laden mixing layer. The gas phase is solved using point particle DNS while the droplets evolve as point sources of mass, momentum
and energy corresponding to an LE simulation of type PP-DNS® (cf. Table 1). The droplets are initialized in the lower half plane with a Gaussian distribution of Stokes number with

mass loading 0.2.

] ()] 0.

- <A(1)‘X1,X2,V1,V2,t>

is the conditionally averaged relative acceleration between parti-
cles 1 and 2. The angle brackets represent averaging over all three-
particle (and higher multiparticle) statistics.

Extending LE simulations to faithfully represent two-particle
statistics requires (i) initializing the computational particle
ensemble to match both the ddf and the two-particle density, and
(ii) models for the average relative acceleration between particle
pairs. Such an approach has been successfully employed to model
nanoparticle aggregation [183,189].

8. Summary points

1. Mathematical formulation: The LE approach is shown to be well
suited for modeling the effects of polydispersity and dispersed-
phase inertia in multiphase flows that result in nonlinear,
multiscale interactions and nonequilibrium effects leading to

complex flow behavior. The LE approach is shown to belong to
a hierarchy of statistical models for multiphase flow, and LE
closure models imply a set of moment equations in the Eulerian
two-fluid theory. The mathematical formulation of the LE
approach that is based on a stochastic point process theory is
general enough to extend to dense multiphase flows. It is
shown that the point particle assumption is not necessary in LE
formulations, and that the mathematical formulation accounts
for finite-sized particles, provided appropriate closure models
are chosen and volume—displacement effects in the carrier
phase are accounted for. It is emphasized that two-particle
effects are not represented in the first-order LE formulation,
but are modeled. Two-particle information is primarily needed
to compute collisional effects that are modeled in the LE
approach. However, recent DNS also reveal the importance of
neighbor particle effects and fluctuations in number of parti-
cles or droplets (compared to the mean). Representation of
both these phenomena requires two-particle information, so
they must also be modeled in a first-order LE formulation.

. Closure models: The LE particle method solution to the NDF can
be interpreted as a computational solution to the evolution of an
ensemble of identically distributed surrogate droplets (or
particles). Conceptualizing surrogate particles as only being
statistically equivalent to physical particles or droplets gives
considerable flexibility in modeling. One of the advantages of
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the LE particle method solution is that it is easy to ensure that
models are realizable and Galilean-invariant. While models for
particle or droplet velocity can be deterministic or stochastic,
recent evidence from DNS of gas—solid flow suggests that
stochastic models for the particle velocity increment might
represent particle acceleration statistics more faithfully than
deterministic models. Implied models for the mean and fluc-
tuating dispersed-phase velocity should capture mean
momentum transfer and transfer of TKE over a range of volume
fraction, Stokes number and Reynolds number. Position evolu-
tion and droplet dispersion models should capture the depen-
dence of dispersion statistics on volume fraction, Stokes number
and Reynolds number. The opposite trends of particle dispersion
and interphase TKE transfer on Stokes number can be captured
using a timescale that incorporates multiscale effects.

3. Numerical solution: Accurate calculation of the interphase
transfer terms corresponding to mass, momentum, and energy
coupling between the Lagrangian particle representation and
the Eulerian gas-phase equations is crucial for predicting
qualitatively correct physical behavior, as well as for quantita-
tive comparison with experiments or higher fidelity simula-
tions. An error model for LE simulations is proposed that
decomposes the total numerical error into discretization,
statistical, and bias error contributions. In TLE simulations
where a fixed number of computational particles N is used to
represent the dispersed phase on a grid, the statistical error in
a grid-based estimate of any mean field quantity increases with
grid refinement, resulting in non-convergent LE simulations.
Without the use of special numerical algorithms, the statistical
error can overwhelm the calculation of physical quantities such
as the mean interphase momentum transfer. A solution to the
LE numerical convergence problem is the use of grid-free
kernel-based estimators. With grid-free estimation methods
the Eulerian grid for the carrier phase can be refined inde-
pendently of the number of computational parcels that repre-
sent the dispersed phase in the Lagrangian frame. Since in this
approach the Eulerian grid does not need to be tied to particle
size it always results in convergent estimates, whereas with
grid-based estimation methods the computed local dispersed-
phase volume fraction appears to not converge with increasing
grid refinement. Another source of numerical error in LE
simulations is spatial nonuniformity in the distribution of
computational particles. A computational particle number
density control algorithm that employs time-evolving statis-
tical weights ensures a near-uniform distribution of computa-
tional particles to remedy this problem. Therefore, the two
major limitations of TLE simulations: (i) increase in statistical
error with grid refinement, and (ii) nonuniform spatial distri-
bution of statistical error, are effectively addressed by kernel-
based grid-free estimation, and computational particle
number density control, respectively.

4, Variants and extensions: Since two-particle statistics are not
incorporated in the first-order LE formulation, inferring the
physics of phenomena such as preferential concentration
phenomena from LE simulations is questionable. Extending LE
simulations to faithfully represent two-particle statistics
requires (i) initializing the computational particle ensemble to
match both the ddf and the two-particle density, and (ii) models
for the average relative acceleration between particle pairs.

9. Future directions

1. Mathematical formulation: One important extension of the
current first-order LE approach is to formally include two-

particle effects. Based on the results in Fig. 6(b) we conclude
that it may not be possible to propose a closure for the
conditional acceleration of a particle due to hydrodynamic
forces (A|x,v;t) that is dependent purely on first-order
statistics. Since the kinetic theory or ddf description does not
contain a description of second-order statistics, this suggests it
may be an inadequate level of closure for multiphase flows in
which fluctuations of number and volume are significant. The
other extension is the formal inclusion of joint particle (or
droplet) and carrier fluid-phase statistics. For particles and
droplets of finite size this also requires extension to two-
particle statistics.

2. Closure models: It is anticipated that the development of
models from DNS will play a major role in improvement of LE
closures. Development of models for LES will depend on the
filtering approach, with the recently introduced self-
conditioned LES approach appearing to be the most consis-
tent and promising [1,184]. The development of stochastic
collision models along the Enskog Simulation Monte Carlo
(ESMC) approach [185,186] will be useful for LE simulation of
dense flows. Furthermore, there is still scope for development
of multiscale models for LE simulation of multiphase flows.
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Appendix A. Evolution equation for the volume-weighted ddf
of fluctuating velocity

The evolution equation for the volume-weighted ddf of fluc-
tuating velocity g is derived in this section. Using the chain rule,
we first form the time and spatial derivatives of the r3-weighted
ddf f:

of _og_ g Vi) (83)
ot — ot ow; ot

o _ og 0g (V) (84)
an axk GWJ an

The above two expressions can be combined as follows:
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f (5 of _ 0z, (s og og |3(V))
o " (Vie) + wi ox, ot (Vie) + wi e ow; | ot
o a(v;)
+ [ (Vi) + wy W

(85)

Multiplying Eq. (10) on both sides by 1>, the evolution equation
for f = r3f can be derived:

of of @ F 9 E
a Uk@ = 76_1)’{ <Aklxa VA t)f] - & |:<®‘Xa v, 13 t>f
+3r2(Ox,v,r; t). (86)

Note that since v is a sample space variable, it can be taken
outside the derivative in the second term on the left hand side.
Equating the right hand sides of Eqgs. (85) and (86), and rearranging
results in the transport equation for the r*-weighted ddf of fluc-
tuating velocity Eq. (38).
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