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Predictive device-level computational fluid dynamics (CFD) simulation of gas–solid flow is dependent on
accurate models for unclosed terms that appear in the averaged equations for mass, momentum and energy
conservation. In the multifluid theory, the second moment of particle velocity represents the strength of
particle velocity fluctuations and is known to play an important role in the prediction of core-annular flow
structure in risers (Hrenya and Sinclair, AIChEJ, 43 (4) (1994) [5]). In homogeneous suspensions the
evolution of the second velocity moment is governed by the particle acceleration–velocity covariance.
Therefore, fluctuations in the hydrodynamic force experienced by particles in a gas–solid flow affect the
evolution of particle velocity fluctuations, which in turn can affect the mean and variance of the
hydrodynamic force. This coupling has been studied in the limit of Stokes flow by Koch and co-workers using
a combination of kinetic theory and multipole expansion simulations. For Reynolds numbers beyond the
Stokes limit, direct numerical simulation is a promising approach to quantify this coupling. Here we present
direct numerical simulation (DNS) results for the evolution of particle granular temperature and particle
acceleration variance in freely evolving homogeneous gas–solid suspensions. It is found that simple
extension of a class of mean particle acceleration models to their corresponding instantaneous versions does
not recover the correlation of particle acceleration with particle velocity. This study motivates the
development of better instantaneous particle acceleration models that are able to accurately capture the
coupling between particle acceleration and velocity.
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1. Introduction

Gas–solid flows are commonly encountered in energy generation
and chemical processing. The design and scale-up of industrial devices
motivate a better understanding of gas–solid flow characteristics and
transport phenomena. A fundamental understanding of gas–solid
flow is increasingly relevant with renewed interest in zero-carbon
and carbon-negative energy generation technology such as chemical
looping combustion.

Computational fluid dynamics (CFD) simulations that solve for
averaged equations of multiphase flow are being increasingly used in
the design process because they provide detailed information about
the solid volume fraction and phasic mean velocity fields in gas–solid
flow [1]. Most CFD codes for device-level simulations of gas–solid flow
are based on the Eulerian–Eulerian (EE) multifluid approach because
these are computationally less expensive than Lagrangian–Eulerian
(LE) simulations. In the EEmultifluid approach both the solid and fluid
phases are treated as interpenetrating continua, and averaging
techniques [2–4] are used to derive the equations governing the
conservation of averagemass andmomentum in the fluid and particle
phases. This results in a closure problem similar to that encountered
in the statistical theory of single-phase turbulence because the
averaging procedure results in unclosed terms that need to be
modeled. For instance, themeanmomentum conservation equation in
the particle phase requires closure of the average fluid–particle
interaction force (mean drag force) and the average stress in the solid
particle phase. Accurate models for these unclosed terms are needed
for predictive CFD simulation of gas–solid flow.

As with all statistical closures, an important modeling question is
the adequacy of the mathematical representation to capture physical
phenomena of engineering relevance. For instance, it is now
established that the prediction of core-annular structure in riser
flows requires solving the transport equation for the particle granular
temperature or pseudo-thermal energy [5]. This informs us that a
closure at the level of mean quantities is not adequate to predict
important flow characteristics such as core-annular structure, but a
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closure at the level of secondmoments is necessary. However, it is not
clear that closure at the level of the second moments is sufficient for
predictive CFD simulation that will facilitate design and scale-up.
Closure at the level of third-order moments has been attempted by
some researchers [6,7].

An alternative approach to the closure of moment transport
equations is to consider the evolution of the one-particle distribution
function. Just as closure at the level of the transport equation for the
probability density function (PDF) in single-phase turbulent reactive
flow implies a closure for all moment equations, similarly a kinetic
equation that achieves a closure for the one-particle distribution
function in kinetic theory implies a closure for all moment equations.
In particular, a closure at the one-particle distribution level automat-
ically implies closure of the mean momentum and particle velocity
second moment equations. Furthermore, closures at the one-particle
distribution level are guaranteed to satisfy realizability criteria,
whereas special care is needed to ensure the same in the case of
moment closures. These considerations motivate the development of
models for the unclosed terms in the transport equation for the one-
particle distribution function corresponding to gas–solid flow.

While there is considerable work on kinetic theory of granular
flows where the interaction with ambient fluid is neglected, the
kinetic theory of gas–solid flow is still being developed. For low
Reynolds number flow in the Stokes regime, Koch and co-workers
[8,9] developed a kinetic theory closure with a model for the
conditional particle acceleration that accounts for the presence of
ambient fluid in the term transporting the distribution function in
velocity space. This theoretical framework allows us to consider two
coupled effects: (i) the effect of particle velocity fluctuations on the
mean drag, and (ii) the effect of fluctuating particle acceleration on
particle velocity fluctuations or granular temperature.Wylie et al. [10]
studied the effect of particle velocity variance on the mean drag for
the limiting case of high Stokes number where the particles move
under elastic collisions but are unaffected by hydrodynamic forces.
They showed that particle velocity fluctuations do not affect the mean
drag in Stokes flow. This result is not surprising because in Stokes flow
the particle acceleration is a linear function of instantaneous particle
velocity. However, at moderate mean slip Reynolds numbers the drag
law is nonlinear and Wylie et al. [10] showed that particle velocity
fluctuations do affect the mean particle acceleration. They proposed a
modified drag law in terms of volume fraction ϕ, mean flow Reynolds
number Rem and Reynolds number based on particle granular
temperature ReT. The focus of this paper is on the second effect: the
effect of fluctuating hydrodynamic forces on granular temperature.

For statistically homogeneous gas–solid flows, the correlation
between the particle fluctuating velocity and its acceleration fluctuation
determines the evolution of the particle velocity secondmoment. In the
limiting case of Stokes flow, Koch [8,9] analyzed the granular
temperature, which is the trace of the particle velocity secondmoment,
and decomposed the particle acceleration–velocity covariance as the
sum of source and sink contributions. Particle granular temperature
decreases due to inelastic collisions and viscous interactions with the
ambient fluid, and these effects are represented by the sink term. If
particle collisions are elastic or flow past fixed particle assemblies is
considered, then the granular temperature decreases only due to
viscous interactions with the ambient fluid. In the Stokes flow regime
the sink term simply relaxes the granular temperature to zero on the
viscous relaxation time scale. In Koch's decomposition of the acceler-
ation–velocity covariance into source and sink terms [9], the source
term due to hydrodynamic interactions with neighboring particles can
balance the sink term leading to a steady state granular temperature in
stable homogeneous suspensions. For moderate Reynolds number,
there is no unique decomposition of the particle acceleration–velocity
covariance as the sum of source and sink contributions.

The source term in the granular temperature equation plays an
important role in sustaining a nonzero value of the granular
temperature. In its absence the granular temperature in a homoge-
neous suspension would simply decay to zero, leading to an infinite
Mach number in the particle phase. Not only is this problematic from a
numerical standpoint for CFD simulations, but it is also unphysical
over a wide range of mean flow Reynolds number and volume
fraction. The origin of the source term lies in the hydrodynamic
interactions that each particle experiences with its neighbors, and the
range of this interaction depends on the mean flow Reynolds number
and the solid volume fraction. It is well known that a sphere
sedimenting in a fluid can have a “drafting” effect on its neighbors
and draw them into its wake. The draft, kiss and tumble phenomena
arewell documented in [11]. These physical mechanisms canmanifest
as a source in particle velocity fluctuations by changing each particle's
velocity. This effect is quantified through DNS of freely evolving
suspensions in this work.

Although Koch's analysis is useful in the Stokes flow regime, it is
difficult to extend the analysis to moderate Reynolds number cases. At
moderate Reynolds number, DNS offers a promising approach to
quantify unclosed terms in the transport equations for particle
velocity moments, or the transport equation for the one-particle
distribution function. This naturally leads to an evaluation of existing
models. We use DNS of gas–solid flow at moderate Reynolds number
to evaluate a class of acceleration models. The results indicate the
need for improved instantaneous particle accelerationmodels that are
capable of capturing the coupling between particle velocity fluctua-
tions and hydrodynamic forces in gas–solid flow.

The next section describes pertinent details of the statistical
modeling approach that motivate this study. This is followed by a
description of the Particle-resolved Uncontaminated-fluid Reconcil-
able Immersed Boundary Method (PUReIBM) that is used to perform
DNS of gas–solid flow. Then the simulation details for fixed particle
assemblies and freely moving suspensions are presented. Results that
quantify the coupling are reported, and a class of particle acceleration
models is evaluated. Finally, the conclusions of this study are
summarized.

2. Statistical models

The averaged equations for mean momentum conservation and
transport of the second moment of particle velocity in the multifluid
theory can be derived using either the Eulerian–Eulerian or
Lagrangian–Eulerian approach. A comprehensive summary of the
relations between the moment equations obtained from these
statistical approaches can be found in [12]. Here we choose the
Lagrangian–Eulerian approach with the one-particle distribution
function as our starting point because it naturally leads to an explicit
connection with the moment equations.

2.1. One-particle distribution function

The one-particle distribution function, which is the number
density of particles in an appropriately defined phase space, is the
fundamental quantity of interest in the kinetic theory of granular and
multiphase flow [8,14–17]. It is also referred to as the droplet
distribution function in spray theory [18]. For monodisperse particles
the distribution function f(x, v, t) is defined in a position–velocity
space, and evolves by the following transport equation:

∂f
∂t + ∇x· vfð Þ + ∇v· 〈A jx; v; t〉fð Þ = ḟ coll; ð1Þ

where ∇x and ∇v denote the gradient operators in the position and
velocity space, respectively, and ḟcoll is the collisional term that can
depend on higher-order statistics. A closure model for the collisional
term results in a kinetic equation. This well-known equation has been
extensively studied in the context of granular flows where collisions



1 Note that we do not distinguish between particle velocity fluctuations arising from
collisions and other sources, as suggested by Breault et al. [13]. Our definition is
consistent with the standard definition in kinetic theory of granular and gas–solid
flow, and it is also the definition adopted in the two-fluid theory.
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are inelastic. Extensions to non-dilute cases that follow the Enskog
approach have also been pursued. The focus in the kinetic theory of
granular flow is on obtaining closed-form solutions [19], or constitu-
tive relations [17,20–23], starting from a kinetic equation. Most of
these studies rely on the Chapman–Enskog expansion about a normal
solution in terms of a nonuniformity parameter that is essentially the
Knudsen number.

The principal difference between the kinetic theory of gases
and the kinetic theory of gas–solid flow is that in the latter, the
conditional particle acceleration term 〈A|x, v; t〉 appears inside the ve-
locity derivative in the velocity transport term because particle drag
depends on particle velocity through slip with respect to the fluid.
This dependence of particle acceleration on particle velocity in Eq. (1)
results in the correlation of A and v that determines the evolution of
the second moment of particle velocity, and its trace, the particle
granular temperature. In the transport equation for the distribution
function (cf. Eq. (1)), 〈A|x, v; t〉 represents the average particle accel-
eration conditional on position x and velocity v. For the spatially
homogeneous case with monodisperse particles it can be interpreted
as the average acceleration experienced by a particle with velocity v.
The averaging operator 〈·〉 represents integration over all higher-
order multiparticle distribution functions [8,15] that can be defined
on the basis of the ensemble of particles with position and velocity
{X(n)(t), V(n)(t), n=1, …, N}. In particular, the conditional accelera-
tion 〈A|x, v; t〉 is obtained by integrating out its dependence on the
two-particle density (pair correlation function). In other words, the
conditional acceleration 〈A|x, v; t〉 is not completely determined by the
particle velocity, but may be affected by the presence of neighbor
particles. The statistical description of multiparticle interactions is not
contained in the one-particle distribution function.

Subramaniam [16] notes that when the gas phase is represented
by Reynolds-averaged fields, a class of models for the unclosed
conditional acceleration term A⁎ can be written as:

〈A jx; v; t〉 = AT 〈Qg x; tð Þ〉
n o

; q f x; v; tð Þð Þ; x; v;…; t
� �

; ð2Þ

where {〈Qg(x, t)〉} represents a set of averaged fields from the gas-
phase solution (such as the mean gas velocity and turbulent kinetic
energy), and q(f) is any simply computed function of the distribution
function. The ellipsis denotes the dependence on statistical quantities
that are not represented in the distribution function, e.g., dependence
on higher-order multiparticle statistics, or fluid-phase statistics not
represented in {〈Qg(x, t)〉}. Recall that the physical origins of the
source term in the granular temperature equation lie in the
hydrodynamic interactions with neighbor particles and fluid-phase
velocity fluctuations. The statistics of neighbor particles are not
contained in f(x, v, t). If the implementation of the multifluid theory
accounts for fluid-phase velocity fluctuations, then this dependence
can be incorporated in the acceleration model of Eq. (2). However,
many implementations of the multifluid theory do not account for
fluid-phase velocity fluctuations.

As noted earlier, closure of the transport equation for the
distribution function (cf. Eq. (1)) implies closure for all moment
equations. In the following, the implied closure for the mean and
second moment of particle velocity is examined.

2.2. Moment equations

The averaged equations for mean momentum conservation and
transport of the second moment of particle velocity implied by
Eq. (1) are derived using the usual procedure to derive hydrody-
namic equations in kinetic theory, except for the fact that the
velocity dependence in the conditional acceleration results in an
additional term in the second moment equation [8,12]. Here these
equations are discussed in the context of modeling the conditional
acceleration 〈A|x, v; t〉 to capture the coupling between particle velo-
city fluctuations and hydrodynamic force. Since the DNS results we
present in this study are for fixed particles or for those undergoing
elastic collisions, the moment equations are presented for the case of
elastic collisions only.

2.2.1. Mean particle velocity
The mean momentum conservation equation written in index

notation is

∂
∂t ρpϕ〈vj〉
� �

+
∂
∂xk

ρpϕ〈vj〉〈vk〉
� �

= ρpϕ〈Aj〉−
∂
∂xk

ρpϕ〈v″j v
″
k〉

� �
; ð3Þ

where ρp is the particle density, ϕ is the solid volume fraction given by
ϕ=nπdp3/6, where n is the number density of the particles and dp is
the particle diameter. For gas–solid flow, the mean particle acceler-
ation 〈A〉 due to the fluid–particle drag force is an unclosed term in
Eq. (3). In EE multifluid theory, the mean particle acceleration 〈A〉 is
modeled using a drag law as

〈A〉 = −β〈W〉; ð4Þ

where 〈W〉= 〈v〉− 〈u(f)〉 is the mean slip velocity between the solid
and fluid phases. In this definition, 〈u(f)〉 and 〈v〉 are the fluid and solid
phase-averaged velocities, respectively. For an isolated particle in
Stokes flow, β is a constant equal to 3πμfdp, where μf is the dynamic
viscosity of the fluid. The Reynolds number based on the mean slip
velocity between the fluid and particulate phase quantifies the
relative importance of fluid inertia, and is defined as

Rem = 1−ϕð Þρf j〈v〉−〈uðf Þ〉 jdp
μf

; ð5Þ

where ρf is the density of the fluid. When the Reynolds number based
on themean slip Rem ismoderate (RemN1), β is a function of themean
slip velocity between the particle and the fluid phase, i.e. β=β(|〈W〉|),
and the drag is no longer linearly dependent on themean slip velocity.

Typical drag laws for gas–solid flow [24–26] characterize the
dependence of fluid–particle drag force on the mean slip Reynolds
number and solid volume fraction. These are obtained by a
combination of fitting experimental data and using semi-analytical
approaches in limiting cases. More recently, direct numerical
simulation of flow past homogeneous fixed particle assemblies has
been used to deduce drag laws ([27–29]) describing the dependence
on mean slip Reynolds number and solid volume fraction.

In the mean particle velocity evolution equation, the last term on
the right hand side of Eq. (3) is the transport of particle Reynolds
stress arising from correlation of particle velocity fluctuations. Particle
velocity fluctuations are defined about the mean velocity as

v″ = 〈v−v〉; ð6Þ

and the particle granular temperature1 that characterizes the strength
of these fluctuations is

T =
1
3
〈v″⋅v″〉: ð7Þ

This term is calculated by solving a transport equation for the particle
velocity covariance.



2 Later Koch and Sangani [9] used an approximate multipole method to show that
even for dense suspensions of elastic particles in Stokes flow, the velocity distribution
is Maxwellian.
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2.2.2. Transport of particle velocity covariance
The evolution equation for the second moment of velocity written

in index notation is [8,9,12]

∂
∂t ρpϕ〈v″i v″j 〉
� �

+
∂
∂xk

ρpϕ〈v″i v″j 〉〈vk〉
� �

= − ∂
∂xk

ρpϕ〈v″i v″j v″k〉
� �

−ρpϕ 〈v″i v″k〉
∂〈vj〉
∂xk

+ 〈v″j v″k〉
∂〈vi〉
∂xk

 !
+ ρpϕ 〈A″

i v
″
j 〉 + 〈A″

j v
″
i 〉

� �
:

ð8Þ

For statistically homogeneous gas–solid flow with no mean
velocity gradients the transport, production, and triple-velocity
correlation terms drop out and Eq. (8) reduces to

∂
∂t ρpϕ〈v″i v″j 〉
� �

= ρpϕ 〈A″
i v

″
j 〉 + 〈A″

j v
″
i 〉

� �
; ð9Þ

showing that the particle velocity covariance evolves according to the
particle acceleration–velocity covariance (fluctuations in the acceler-
ation are defined about the mean acceleration, i.e. A″j=Aj− 〈Aj〉.) This
equation shows how fluctuations in the hydrodynamic forces affect
the particle velocity covariance. Contracting the indices in Eq. (9)
results in the evolution of particle granular temperature for a
statistically homogeneous gas–solid flow:

dT
dt

=
2
3 〈A

″
i v

″
i 〉: ð10Þ

In the above equation, the trace of the particle acceleration–velocity
covariance 〈A″iv″i〉 can be either a positive or negative quantity, and
hence it can act as a source or a sink of granular temperature.

2.2.3. Mean and fluctuating particle acceleration
From this discussion of moment equations we see that the mean

acceleration affectsmeanmomentum, and fluctuations in acceleration
correlate with fluctuating velocity to act as a source or sink term in the
granular temperature equation. In the following, we relate the mean
acceleration and acceleration fluctuations to the one-particle distri-
bution function.

The mean acceleration 〈A〉 is obtained as the integral of the
conditional expectation of particle acceleration over velocity space:

〈A〉 x; tð Þ = 1
n x; tð Þ∫ v½ � 〈A jx; v; t〉 f x; v; tð Þdv; ð11Þ

and this leads to the expression 〈Ffp〉=ρp–ϕ〈A〉 for the fluid–particle
drag (per unit volume) in the mean particle momentum equation. The
expression for themean acceleration is useful because it tells us how the
velocity dependence in the conditional acceleration can affect themean
drag through the distribution function. The one-particle distribution
function can bedecomposed [16] into the product of a number densityn
(x, t) and a velocity probability density function fV

c(v; x, t):

f x; v; tð Þ = n x; tð Þf cV v;x; tð Þ: ð12Þ

Therefore, changes in the distribution and level of particle velocity
fluctuations are characterized by the particle velocity probability density
function fV

c(v; x, t), and these affect the mean drag through Eq. (11).
In the kinetic theory description of gas–solid flow using the one-

particle distribution function, the fluctuating acceleration is simply
the difference between the conditional and unconditional mean:
A″= 〈A|v〉−〈A〉. Using this definition, the particle acceleration–
velocity covariance can be written in terms of the one-particle
distribution function as

〈A″
i v

″
j 〉 =

1
n
∫ v½ � 〈Ai jv〉−〈Ai〉f gv″j f v; tð Þdv: ð13Þ
As noted earlier, fluctuations in particle acceleration can arise from
particle velocity fluctuations, hydrodynamic interactions with neigh-
bor particles, and fluid-phase velocity fluctuations. While Eq. (13)
explicitly accounts for the effect of particle velocity fluctuations, the
other effects must be incorporated in the model for the conditional
particle acceleration.

2.2.4. Modeling the conditional particle acceleration
A straightforward extension of the mean particle acceleration

model given by Eq. (4) to its conditional counterpart is

A⁎ = −βW = −β v−〈u fð Þ
〉

� �
; ð14Þ

where A⁎ represents a model (cf. Eq. (2)) for the conditional particle
acceleration 〈A|v〉, and W is the instantaneous slip velocity. Here we
have written the instantaneous slip velocity as the difference
between the instantaneous particle velocity and the mean fluid
velocity, rather than as the difference between the instantaneous
velocities in each phase, i.e.W=v−u. This is because in CFDmodels
based on the multifluid theory there is no representation of the
instantaneous gas-phase velocity and the gas-phase motions are
represented only by the mean gas velocity. Although this simple
model results in the same mean drag as in Eq. (4), its implied closure
for the acceleration–velocity covariance in the granular temperature
equation results in only a sink of granular temperature. This is
because the simple extension in Eq. (14) does not represent the
effects of neighboring particles or fluctuations in the fluid velocity
relative to its mean.

For Stokes flow, Koch [8] derived an analytical closure for the
source term in the granular temperature equation (cf. Eq. (10)) using
a kinetic equation applicable to a dilute monodisperse gas–solid
suspension with high particle inertia. He defined the instantaneous
slip velocity as W=v−u(i), where u(i) is the fluid velocity excluding
the direct effect of the ith particle (but including the disturbance
effects of all the other particles). This definition of the slip velocity
gives rise to a source term in the granular temperature equation.
Linearity of the governing equations in the Stokes flow limit and the
assumption of a dilute suspension allowed the derivation of an
explicit expression for u(i) and the source term. For moderately dense
suspensions, the assumptions made by Koch [8] in the kinetic theory
approach are not valid and hence Koch and Sangani [9] used a semi-
analytical approach that used multipole expansion simulations to
derive an expression for the source of granular temperature in the
Stokes flow limit.

In Section 2.3, we review the closures for the source term given by
[8] and [9] in the Stokes flow limit. Developing similar closures for 〈A|
x, v; t〉 and the source term at moderate Reynolds numbers is difficult
because the governing Navier–Stokes equations are nonlinear. In
Section 3, we present a direct numerical simulation methodology
based on PUReIBM as a promising approach to develop closures for
the source and sink terms in the granular temperature equation at
moderate Reynolds numbers.

2.3. Closure for high Stokes number particles undergoing elastic
collisions in Stokes flow

In a high Stokes number suspension the particle velocities are not
significantly affected by hydrodynamic forces. For a dilute suspension
of very massive particles (high Stokes number) undergoing perfectly
elastic collisions in Stokes flow, Koch [8] showed that the steady state
particle velocity distribution in the kinetic theory description is
Maxwellian.2 Therefore, in this limit the particle velocity covariance
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tensor is isotropic and its evolution can be simply described by the
granular temperature evolution equation.

2.3.1. Dilute suspensions of perfectly elastic particles
For a dilute homogeneous suspension of highly massive and

perfectly elastic monodisperse particles in Stokes flow, the evolution
equation of the granular temperature derived by Koch [8] is

dT
dt

= −2R
τ

T +
2SI
3

: ð15Þ

The first term on the right hand side of Eq. (15) is the sink of
particle granular temperature due to viscous dissipation. In this term,
R = 1 + 3ϕ1=2 =

ffiffiffi
2

p
is the dimensionless particle momentum relax-

ation rate and τ=m /(6πμfa) is the characteristic time scale over
which the velocity of a particle of mass m and radius a relaxes due to
viscous forces. The second term on the right hand side of Eq. (15) is
the source due to hydrodynamic interactions. In the dilute limit, the
expression for this source term is

SI = aptj〈W〉j2� �
= 2π1=2τ2T1=2
� �

: ð16Þ

The source term in the dilute limit is denoted SI to distinguish it
from the source term SII at higher volume fractions that are discussed
in the following section.

2.3.2. Moderately dense to dense suspensions of perfectly elastic particles
Koch and Sangani [9] used the multipole expansion method to

evaluate the source term due to hydrodynamic forces for dense
homogeneous suspensions of massive elastic particles in Stokes flow.
In their simulation the particles move as a granular gas and their
motion is not affected by the interstitial fluid. The evolution equation
for the granular temperature is written as

dT
dt

= −
2Rdiss ϕð Þ

τ
T +

2SII
3

: ð17Þ

For the sink term due to viscous dissipation (first term on the right
hand side of Eq. (17)), the expression for the dimensionless
dissipation rate Rdiss(ϕ) as a function of volume fraction given by
[30] is used. The source term in granular temperature (second term on
the right hand side of Eq. (17)) is expressed as an integral of the
temporal autocorrelation of the force experienced by the particles.
The final expression for the source term given by [9] is

SII =
a
τ2

j〈W〉j2
T1=2 S⁎ ϕð Þ ð18Þ

where S⁎(ϕ) is the dimensionless source term. Expressions for the
dimensionless dissipation rate and the dimensionless source as a
function of the volume fraction can be found in [9].

3. Direct numerical simulation approach

Here we describe a DNS approach based on the Particle-resolved
Uncontaminated-fluid Reconcilable Immersed Boundary Method
(PUReIBM) that is used to solve for flow past arbitrary arrangements
of solid spherical particles. Two types of simulation results are
presented: (i) for fixed particle assemblies, and (ii) for freely moving
suspensions. The hydrodynamic solver that is common to both types
of simulations is first described. Then the solution approach for fixed
particle assemblies is outlined. This is followed by a description of the
simulations of freely evolving suspensions where the positions and
velocities of the particles evolve under the action of hydrodynamic
and collisional forces.
3.1. Hydrodynamic solver

PUReIBM is a particle-resolved direct numerical simulation ap-
proach for gas–solid flow where the continuum Navier–Stokes
equations with no-slip and no-penetration boundary conditions on
each particle's surface are solved using a forcing term that is added to
themomentumequation. The salient features that distinguish PUReIBM
from other immersed boundary method approaches are as follows:

1. Uncontaminated fluid: In PUReIBM the immersed boundary (IB)
forcing is solely restricted to those grid points that lie in the solid
phase, and therefore the flow solution in the fluid phase is
uncontaminated by the IB forcing. Consequently the velocity and
pressure in the fluid phase is a solution to the unmodified Navier–
Stokes equations (in contrast to IB implementations that smear the
IB forcing on to grid points in the fluid phase adjoining solid
boundaries, resulting in solution fields that do not correspond to
unmodified Navier–Stokes equations).

2. Reconcilable: In PUReIBM the hydrodynamic force experienced by
a particle is computed directly from the stress tensor at the particle
surface that is obtained from this uncontaminated-fluid flow
solution (in contrast to IB implementations that calculate the
hydrodynamic force from the IB forcing field). This feature of
PUReIBM enables us to directly compare the DNS solution with any
random-field theory of multiphase flow. In particular, for statisti-
cally homogeneous suspensions it is shown by Garg et al. [29] that
if the volume-averaged hydrodynamic force exerted on the
particles by the fluid is computed from a PUReIBM simulation, it
is a consistent numerical calculation of the average interphase
momentum transfer term 〈τji′nj(s)δ(x−x(I))〉 in the two-fluid theory
[3]. This reconciles DNS results with multiphase flow theory.

Owing to these specific advantages, it is shown elsewhere [29,31]
that PUReIBM is a numerically convergent and accurate particle-
resolved DNS method for gas–solids flow. Its performance has been
validated in a comprehensive suite of tests: (i) Stokes flow past simple
cubic (SC) and face centered cubic (FCC) arrangements (ranging from
dilute to close-packed limit) with the boundary-integral method of
[32], (ii) Stokes flow past random arrays of monodisperse spheres
with LBM simulations of [33] (iii) moderate to high Reynolds numbers
(Rem≤300) in SC and FCC arrangements with LBM simulations of [34]
and (iv) high Reynolds number flow past random arrays of
monodisperse spheres with ANSYS-FLUENT CFD package. It has also
been extended to study passive scalar transport, and validated for
heat transfer from a single isolated sphere [31].

The numerical scheme used in PUReIBM is a primitive-variable,
pseudo-spectral method, using a Crank–Nicolson scheme for the
viscous terms, and an Adams–Bashforth scheme for the convective
terms. A fractional time-stepping method that is based on Kim and
Moin's approach [35] is used to advance the velocity fields in time. The
principal advantage of the PUReIBM approach is that it enables the use
of regular Cartesian grids to solve for flow past arbitrarily shaped
moving bodies without the need for costly remeshing. It also
considerably simplifies parallelization of the flow solver as compared
to unstructured body-fitted grids.

3.2. Fixed particle assemblies

The particle configuration for DNS of flow past fixed assemblies is
generated by first allowing particles to attain a random spatial
arrangement through elastic collisions. A homogeneous configuration
of non-overlapping spheres corresponding to the specified solid
volume fraction is generated with particle centers on a lattice, and
particles are assigned a Maxwellian velocity distribution. Particles are
allowed to equilibrate under purely elastic collisions (in the absence
of any interstitial fluid) to generate a homogeneous particle
configuration for the DNS flow solver. Ensemble-averaged flow
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statistics are obtained by averaging over multiple independent
simulations (MIS) performed with several such configurations. Each
statistically identical configuration corresponds to the same average
solid volume fraction and pair correlation (macrostate), but differs in
the specific arrangement of particles (microstates). The PUReIBM
simulation methodology and details of the computation of the
mean acceleration (or mean drag) for a fixed particle assembly are
described by Garg et al. [29].

3.3. Freely evolving suspensions

Numerical simulations [36] of freely evolving suspensions have
been performed to study the sedimentation of monodisperse particles
under gravity in the presence of a fluid. Simulations of freely
sedimenting suspensions are carried out in periodic domains such
that the imposed pressure gradient in the fluid balances the weight of
the particles. In sedimentation calculations the steady mean flow
Reynolds number attains a unique value that depends on the problem
parameters (fluid and particle densities, solid volume fraction and the
value of acceleration due to gravity), and this value is not known a
priori. In the present study we seek to simulate freely evolving particle
suspensions at arbitrary mean slip Reynolds numbers while main-
taining the solid/fluid density ratio and solid volume fraction at fixed
values. We also want to specify the mean flow Reynolds number as
input to the simulation. This can be accomplished by specifying a
mean pressure gradient that does not exactly balance the weight of
the particles, but exerts the requisite body force to maintain the
desired slip velocity between the particles and fluid. However, now
both the mean particle velocity and the mean fluid velocity change in
time because there is no steady solution in the laboratory frame to the
mean momentum balance in each phase. Note that even though the
mean phasic velocities are evolving in time, their difference—the
mean slip velocity—attains a steady value.

The difficulty in simulating this flow setup in the laboratory frame
with periodic boundary conditions is that the continuous increase in
fluid and particle velocities places unnecessary restrictions on the time
step through the Courant condition. To circumvent this problem we
developed a different simulation setup that performs the DNS in an
accelerating reference frame such that the particles have a zero mean
velocitywith respect to the computational grid. The equations ofmotion
are solved in an accelerating frame of reference that moves with the
mean velocity of the particles. In this frame, the particles execute only
fluctuating motion. In our setup, particles on average do not flow in or
out of the computational domain, thereby maintaining a reasonable
time step that is based on themean slip velocity. Particles do flow in and
out of the domain because of their fluctuating velocity. The advantage of
our setup is that the desiredmean flow Reynolds number is specified as
an input parameter, and we are able to solve the problem with
reasonable time steps that resolve the flow. Details of the equations
solved in the accelerating reference frame are given in Appendix A.

In the freely evolving DNS, each particle moves with an
acceleration that arises from hydrodynamic and collisional forces.
The particles are represented in a Lagrangian frame of reference at
time t by {X(i)(t), V(i)(t) i=1, …, Np}, where X(i)(t) denotes the ith
particle's position and V(i)(t) denotes its translational velocity. The
position and translational velocity of the ith particle evolve according
to Newton's laws as:

dXðiÞ tð Þ
dt

= VðiÞ tð Þ; ð19Þ

m
dV ið Þ

dt
= B + F ið Þ

d tð Þ + ∑
j=1
j≠i

Np
Fcij tð Þ; ð20Þ
where B is any external body force (zero in the simulations shown
here), Fd(i) is the hydrodynamic force (from pressure and viscous stress
that is calculated from the velocity and pressure fields at the particle
surface) and Fijc is the contact force on the ith particle as a result of
collision with jth particle. Particle–particle interactions are treated
using soft-sphere collisions based on a spring-dashpot contact
mechanics model that was originally proposed by Cundall and Strack
[37]. The advantage of using soft-sphere collisions is that the
simulations can be extended to higher volume fractions because
enduring multiparticle contacts are taken into account. In the soft-
sphere approach, the contact mechanics between two overlapping
particles is modeled by a system of springs and dashpots in both
normal and tangential directions. The spring causes colliding particles
to rebound, and the dashpot mimics the dissipation of kinetic energy
due to inelastic collisions. The spring stiffness coefficients in the
tangential and normal directions are kt and kn, respectively. Similarly,
the dashpot damping coefficients in the tangential and normal
directions are ηt and ηn, respectively. The spring stiffness and dashpot
damping coefficients are related to the coefficient of restitution and
the coefficient of friction (see [38] for details of the implementation).

The particles considered in this study are assumed to be perfectly
elastic and frictionless. Since the particles are perfectly elastic, the
damping force arising from the dashpot is zero. The tangential
component of the contact force is zero for frictionless particles.
Therefore, only the normal component of the spring force FnijS

contributes to the contact force Fijc at time t:

Fcij tð Þ = FSnij tð Þ: ð21Þ

At the initiation of contact, the normal spring force FnijS is equal to
−knδij, where δij is the overlap between the particles computed using
the relation

δij = dp−jX ið Þ−X jð Þj: ð22Þ

A time history of the spring forces is maintained once the contact
initiates. At any time during the contact, the normal spring force is
given by

FSnij t + Δtð Þ = FSnij tð Þ−knVnijΔt; ð23Þ

where Vnij is the relative velocity in the normal direction (defined
below) that is computed using

Vnij = V ið Þ−V jð Þ� �
⋅r̂ij

h i
r̂ij: ð24Þ

The normal vector r̂ij is the unit vector along the line of contact
pointing from particle i to particle j. The governing equations of
motion that are solved in the fluid, and the details of the computation
of the hydrodynamic force acting on the particles are discussed in
Appendix A.

A homogeneous particle configuration is generated in the same
way as for the fixed particle assemblies by equilibrating an ensemble
of particles undergoing elastic collisions in the absence of interstitial
fluid. Following the simulation methodology of [29], a steady flow at
the desired mean flow Reynolds number is first established for
this fixed particle assembly. Once the mean fluid–particle drag
experienced by this fixed particle assembly reaches a steady state,
the particles are released at time t=0 for the freely evolving DNS
simulation.

The particles are advanced on a time step Δtcoll that is determined
by the spring stiffness and the dashpot coefficients. The flow fields are
updated on a time step Δtfluid, which ensures that both the convective
and viscous time scales are well resolved. At the start of a flow time
step the forces acting on the particles are computed based on the flow
fields obtained at the end of the previous flow time step. If Δtcoll is

https://www.mfix.org
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smaller than Δtfluid the particles are stepped by Δtcoll until the end of
the flow time step, otherwise both the particles and the fluid are
stepped by Δtcoll. The simulation is continued until the granular
temperature reaches a steady state.

4. Results

We first present results from a validation test for fixed particle
assemblies. We then quantify particle acceleration and its coupling to
fluctuations in the particle velocity in flow past fixed particle
assemblies as well as freely moving suspensions.

4.1. Fixed particle assemblies

Simulations with fixed particle positions and velocities are
representative of physical fluid-particle systems in which the particle
velocities do not change significantly over characteristic fluid time
scales (the relevant scale here being the time to transit a characteristic
length scale such as the particle diameter at the mean slip velocity).
This is true for high Stokes number (gas–solid) suspensions.
Simulations of flow past fixed particle assemblies are less computa-
tionally demanding than freely evolving suspensions, and are useful
for parametric studies (variation of mean flow Reynolds number and
mean solid volume fraction). This approach has been extensively used
to deduce computational drag laws for homogeneous gas–solid (high
Stokes number) suspensions by many researchers [27,28,33,34,39].
Here we use this test to compare PUReIBM DNS results with existing
LBM-based drag correlations.

The mean drag obtained from PUReIBM DNS is compared with the
LBM-based drag correlation of [34] in Fig. 1. The normalized mean
fluid–particle force F is defined as

F =
j〈f〉j

3πμfdpj〈W〉j ð25Þ

where 〈f〉 is the average fluid–particle force per particle. The PUReIBM
DNS results show an excellent match with the drag correlation of [34].

The validation test shown here is performed with all the particles
at rest, so the fluctuations in particle velocity are zero. If a random
velocity is assigned to each particle in the fixed bed according to a
Maxwellian distribution corresponding to a specified value of the
particle granular temperature, then the fixed bed simulation can be
Fig. 1. The comparison of the mean drag obtained from PUReIBM simulations with the
drag correlation reported by [34] at a solid volume fraction of 0.2 for the baseline case of
zero particle velocity fluctuations.
considered an instantaneous snapshot of a freely evolving suspension.
Of course in a freely evolving suspension the dynamic response of the
particles to the hydrodynamic forces will affect the particle velocity
fluctuations, and this is not captured by the fixed bed simulation.
Nevertheless, this still allows us to consider the effect of particle
velocity fluctuations on the hydrodynamic forces, albeit in a limited
sense.

The magnitude of particle velocity fluctuations is characterized by
defining a Reynolds number based on the granular temperature ReT
as:

ReT =
ρf dpT

1=2

μf
: ð26Þ

In Fig. 2 we plot the streamwise component of fluctuating
acceleration A′x for each particle versus its fluctuation in the
streamwise velocity component v′x for Rem=20 and ReT=16 at a
solid volume fraction of 0.2. The first observation is that A′x and v′x are
negatively correlated. This is to be expected because as seen from the
schematic of the flow setup in Fig. 3, a positive fluctuation in particle
velocity results in a lower slip velocity that corresponds to a lower
drag value because of the relation A∝−W for isolated particles. This
manifests as a negative fluctuation in particle acceleration. However,
the second interesting observation from the scatter plot in Fig. 2 is
that some positive fluctuations in velocity actually result in positive
fluctuations in the acceleration. In other words, the presence of
neighbor particles and the resulting hydrodynamic interactions can
occasionally violate the A∝−W relation for isolated particles. Also
the fluid velocity in the proximity of the particle can be significantly
different from the mean fluid velocity, and the definition of the
instantaneous slip as W=v−〈u(f)〉 may not accurately represent the
instantaneous slip velocity. The joint statistics of particle acceleration
and particle velocity represent the coupling between hydrodynamic
forces and particle velocity fluctuations. In particular, the accelera-
tion–velocity covariance is important for accurate prediction of the
particle granular temperature evolution.

We now investigate the predictions for joint particle acceleration–
velocity statistics using a simple model (this model is used in other
works such as [10] to predict the effect of particle velocity fluctuations
Fig. 2. Scatter plot of streamwise component of fluctuating acceleration versus the
streamwise component of fluctuating velocity. Square symbols (□) show fluctuations
in the particle acceleration obtained from DNS using PUReIBM simulations, while upper
triangles (△) show fluctuations in the particle acceleration predicted by simple
extension of a mean drag law to its instantaneous counterpart.



Fig. 3. Schematic of the flow setup. Themean velocity of the fluid phase 〈u(f)〉 is directed
along the positive x axis as shown. The mean velocity 〈v〉 of the particles is zero and so
the mean slip velocity 〈W〉= 〈v〉− 〈u(f)〉 is along the negative x axis. The solid particle
shown in this figure has a positive velocity fluctuation v′ along the positive x axis. The
schematic illustrates that a positive fluctuation about the mean velocity of the particles
implies a reduced instantaneous slip velocity, v′− 〈u(f)〉 between the particle and the
fluid.

Fig. 4. (a) Shows the evolution of the normalized mean drag at a volume fraction of 0.2
and a mean flow Reynolds number of 20 for three different particle to fluid density
ratios: ρp/ρf=10 (red), 100 (blue), and 1000 (purple). The black solid line indicates the
drag in a static bed at the same mean flow Reynolds number and volume fraction. The
dashed lines represent 95% confidence limits on the mean drag for the static bed.
(b) Shows the evolution of the standard deviation of fluctuations in the particle
acceleration relative to the mean drag at a volume fraction of 0.2 and a mean flow
Reynolds number of 20 for different density ratios. In this plot, data for ρp/ρf=10 are
shown on the right hand side y-axis. The standard deviation in the acceleration
obtained for a fixed bed is 0.22.
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on mean drag). The instantaneous counterpart of the acceleration
model described in Eq. (14),

A = −βW;

is used to compute the instantaneous particle acceleration for each
particle velocity value in the DNS. In this model β is taken from the
drag correlation proposed by Hill et al. [34]. The acceleration–velocity
scatter plot obtained from this model is also shown in Fig. 2 (upper
triangles). One can see that this simple extension of the mean
acceleration model does not recover the scatter obtained in the DNS,
but instead it predicts a significantly different joint statistical
behavior. The data points in quadrants Q1 and Q3 that are found in
the scatter plot from DNS are totally absent in the model. Clearly this
comparison points to the need for an improved model for the
conditional particle acceleration in the velocity transport term in the
evolution equation for the one-particle distribution function in the
kinetic theory of multiphase flow.

While useful information regarding instantaneous particle accel-
eration–velocity joint statistics can be extracted from fixed particle
simulations, they are inadequate to characterize the temporal
evolution of the particle granular temperature. For this purpose we
perform DNS of freely evolving suspensions.

4.2. Freely moving suspensions

DNS of a freely evolving suspension in periodic domain is per-
formed for a volume fraction of ϕ=0.2. Unlike sedimentation
studies where the mean slip velocity is limited by the settling
velocity of the particles in suspension, here we solve the equations
of motion in an accelerating frame of reference so that arbitrary
mean flow Reynolds numbers Rem can be simulated. A value of
Rem=20 is chosen for the simulations reported here, which is well
outside the Stokes regime. Three different particle to fluid density
ratios (ρp/ρf=10, 100 and 1000) are used to analyze the dynamics
of the system.

First we examine the mean fluid–particle drag in the freely
evolving suspension for different values of the particle to fluid density
ratio. The time evolution of the normalized drag F (cf. Eq. (25)) is
shown in Fig. 4(a). Fig. 4(a) shows that the mean drag in the
suspension for a particle to fluid density ratio of 1000 varies slowly in
time when compared to the other two cases. This is because the
particle configuration changes very slowly due to high inertia of the
particles. Thus, when compared to the other two density ratios, the
behavior of this system is expected to be much closer to that of a fixed
bed. However, even the case with density ratio of 1000 is not identical
to a fixed bed with zero particle velocity fluctuations because of the
changing particle configuration, nonzero particle velocity fluctuations
and the effect of addedmass in the hydrodynamic force. Nevertheless,
it is clear that as the density ratio increases the mean drag
experienced by the particles in a freely evolving suspension is better
approximated by the corresponding fixed bed simulation.

The fluctuations in the particle acceleration play a very important
role in the dynamics of the suspension as discussed earlier. In Fig. 4
(b), the level of acceleration fluctuations σA relative to the mean
acceleration is plotted with time for the three density ratios. It can be
seen that the particle acceleration fluctuations are almost constant for



65S. Tenneti et al. / Powder Technology 203 (2010) 57–69
the suspension with the highest density ratio of 1000. The steady
value of σA/|〈A〉| for the case with highest density ratio is very close to
that obtained from a fixed assembly of particles at the same volume
fraction of 0.2 and mean flow Reynolds number of 20.

The plot of acceleration fluctuations in Fig. 4(b) has several
significant implications. First of all, it tells us that the steady state
value of σA/|〈A〉| in freely evolving suspensions is not negligible.
Therefore, fluctuating hydrodynamic forces (relative to the mean
drag) are important not just in the Stokes regime, but at moderate
Reynolds numbers also. Secondly, it informs us that the level of
acceleration fluctuations in freely evolving suspensions is not very
different from that in fixed particle assemblies. This partially justifies
the calculation of joint acceleration–velocity statistics from fixed
particle assemblies and their comparison with a simple model that
was presented earlier. The third inference we draw from Fig. 4(b) is
that the instantaneous particle acceleration model must represent the
increasing level of temporal variations in fluctuating hydrodynamic
force that accompany a decrease in particle to fluid density ratio.

We now quantify the effect of the fluctuations in the hydrody-
namic force on particle velocity fluctuations in freely evolving
suspensions. The evolution of granular temperature for the three
different particle to fluid density ratio values that are considered is
shown in Fig. 5. Details of the estimation of granular temperature from
DNS of freely evolving suspensions are given in Appendix B.

As expected, the lower density ratio cases attain a higher steady
granular temperature, and the rate at which the steady value is
reached is inversely proportional to the particle to fluid density ratio.
The value of the scaled granular temperature is relatively low when
compared with the turbulence intensity in single-phase turbulence. It
indicates a high Mach number in the particle phase (on the order of
100 for a scaled granular temperature of 10−4). This indicates that the
particles in the gas–solid suspension are not dominated by collisions
like molecular gases at STP, but rather they are closer to a super-
cooled state. For comparison, the values of granular temperature in
Stokes flow as estimated by the theory of Koch and Sangani [9] are 2 to
3 orders of magnitude smaller than the DNS results shown here for a
mean flow Reynolds number of 20.

5. Conclusions

The coupling between hydrodynamic forces and particle velocity
fluctuations in gas–solid suspensions at moderate Reynolds number is
studied using direct numerical simulation of freely evolving suspen-
Fig. 5. Evolution of the particle granular temperature at a volume fraction of 0.2 and a
mean flow Reynolds number of 20 for different density ratios.
sions that imposes no-slip and no-penetration boundary conditions
on the surface of each particle. The DNS results show that fluctuations
in particle acceleration are significant at moderate Reynolds numbers.
The standard deviation in acceleration relative to the mean acceler-
ation ranges from 0.2 to 0.4 depending on the particle to fluid density
ratio. This extends current understanding of this coupling that has
been extensively studied by Koch and co-workers in the limit of
Stokes flow. Another key finding that emerges from this work is that
the steady state granular temperature from DNS of freely evolving
suspensions at Rem=20 is two to three orders of magnitude larger
than that predicted by the theory of Koch and Sangani [9] for Stokes
flow. A simple extension of drag laws for mean particle acceleration
(based on the mean slip velocity) to model the instantaneous particle
acceleration does not recover the correct acceleration–velocity
covariance that is obtained from DNS. This work motivates the
development of better models for instantaneous particle acceleration
that are capable of accurately representing the coupling between
hydrodynamic forces and particle velocity fluctuations.

Nomenclature
f one-particle distribution function (s3/m6)
ḟcoll source of the one-particle distribution function due to

particle collisions (s2/m6)
v sample space variable for velocity of the particle (m/s)
x position vector (m)
x, y, z components of the position vector x (m)
vx, vy, vz components of the velocity vector v (m/s)
∇x gradient operator in position space given by i ∂

∂x + j ∂
∂y +

k ∂
∂z

∇v gradient operator invelocity spacegivenby i ∂
∂vx + j ∂

∂vy + k ∂
∂vz

t time (s)
i, j, k unit vectors in the x, y and z directions respectively
〈A|x, v; t〉Conditional expectation of particle acceleration (m/s2)
p(x, t) fluid pressure field (N/m2)
〈A〉 unconditional expectation of particle acceleration (m/s2)
〈f〉 average fluid–particle force per particle (N)
〈v〉 average particle velocity (m/s)
〈Ffp〉 mean fluid–particle drag (N)
〈ḡ〉ν mean pressure gradient in the accelerating frame (N/m3)
〈u(f)〉 phasic averaged fluid velocity (m/s)
〈u(s)〉 phasic averaged solid velocity (m/s)
〈W〉 mean slip velocity between the solid and thefluid phases (m/s)
β interphase momentum transfer coefficient (s−1)
x̄ position vector in the accelerating frame (m)
B external body force (N)
W instantaneous particle slip velocity (m/s)
V(i) velocity vector of the ith particle (m/s)
X(i) position vector of the ith particle (m)
{T} granular temperature estimated from DNS (m2/s2)
{u(s)} mean solids velocity estimated from DNS (m/s)
Δt̄ time step in the accelerating frame (s)
Δtcoll time step used to resolve particle–particle collisions (s)
Δtfluid time step used to resolve flow field (s)
δij overlap between the particles i and j (m)
〈ḡ〉νn+1 mean pressure gradient at (n+1)th time step in the

accelerating frame (N/m3)
〈u ̄(f)〉d desired mean fluid velocity in the accelerating frame (m/s)
〈u ̄(f)〉n+1 mean fluid velocity at (n+1)th time step in the accelerating

frame (m/s)
〈u ̄(s)〉n+1 mean solid velocity at (n+1)th time step in the accelerat-

ing frame (m/s)
〈u ̄(f)〉n mean fluid velocity at nth time step in the accelerating

frame (m/s)
〈u ̄(s)〉n mean solid velocity at nth time step in the accelerating

frame (m/s)
F̄Dn total drag force acting on the solid particles at nth time step



Fig. 6. Schematic of the physical domain. Hatched lines represent the volume Vf

occupied by the fluid phase, solid fill represents the volume Vs occupied by the solid
particle, and V=VfvVs is the total volume. ∂V and ∂Vs represent, respectively, the
areas of the computational box and the solid particle.
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in the accelerating frame (N)

Af
n+1 frame acceleration at (n+1)th time step (m/s2)

ηn dashpot damping coefficient in the normal direction used in
the soft-sphere collision model (N s/m)

ηt dashpot damping coefficient in the tangential direction
used in the soft-sphere collision model (N s/m)

FnijS normal component of the spring force between particles i
and j that arises in the soft-sphere collision model (N)

Fd(i) total drag force acting on the ith particle (N)
r ̂ij unit vector along the line of contact pointing from particle i

to particle j
Vs
(n) region occupied by the nth particle

Fijc contact force on the ith particle due to collision with jth
particle (N)

V region of the physical domain
Vf region occupied by the fluid phase
Vs region occupied by the solid phase
ReT Reynolds number based on the particle granular

temperature
μf dynamic viscosity of the fluid (N s/m−2)
νf kinematic viscosity of the fluid (m2/s)
F̄D total drag force acting on the solid particles (N)

ḡ pressure gradient in the accelerating frame (N/m3)
ḡ′ fluctuating pressure gradient in the accelerating frame (N/

m3)
S̄ convective term of the Navier–Stokes equations in the

accelerating frame (m/s2)

t̄ time in the accelerating frame (s)
∂V boundary of the periodic box
∂Vs interface between the solid and the fluid phases
∂Vs

(n) surface of the nth particle
ϕ solid volume fraction
Rem Reynolds number based on the mean slip velocity
ρf thermodynamic density of the fluid (kg/m3)
ρp thermodynamic density of the particles (kg/m3)
σA standard deviation in the particle accelerations (m/s2)
τ viscous relaxation time scale (s)
Vnij relative velocity between the particles i and j in the normal

direction (m/s)
dp particle diameter (m)
dA infinitesimal area element on the surface of the sphere (m2)
F normalized mean fluid–particle force per particle
fv
c velocity probability density function (s3/m3)
kn spring stiffness coefficient in the normal direction used in

the soft-sphere collision model (N/m)
kt spring stiffness coefficient in the tangential direction used

in the soft-sphere collision model (N/m)
m mass of the particle (kg)
n number density (1/m3)
Np number of particles in the domain
R dimensionless particle momentum relaxation rate used by

[8]
Rdiss dimensionless dissipation rate used by [30]
S* dimensionless source of granular temperature used by [8]

and [30]
SI source of granular energy in the dilute volume fraction limit

derived by [8] (m2/s3)
SII source of granular temperature in the moderate volume

fraction limit given by [30] (m2/s3)
T particle granular temperature (m2/s2)
V volume of the physical domain (m3)
Vf volume of the region occupied by fluid (m3)
Vs volume of the region occupied by the solid phase (m3)
ū(x̄, t̄) fluid velocity field in the accelerating frame (m/s)
A″ particle acceleration fluctuations (m/s2)
A* modeled instantaneous particle acceleration (m/s2)
Af frame acceleration (m/s2)
n(n) unit normal vector pointing outward from the surface of the

nth particle
n(s) Unit normal vector pointing outward from the surface of the

solid
u(x, t) fluid velocity field in the laboratory frame (m/s)
u(i)

fluid velocity excluding the direct effect of the ith particle
used by [8] (m/s)

v″ particle velocity fluctuations (m/s)
v′(n) fluctuating velocity of the nth particle (m/s)
Vf frame velocity (m/s)
ψ′ fluctuating pressure (N/m2)

Acronyms
CFD computational fluid dynamics
DNS direct numerical simulation
EE Eulerian–Eulerian
IB immersed boundary
IBM immersed boundary method
LE Lagrangian–Eulerian
MIS multiple independent simulations
PDF probability density function
PUReIBM Particle-resolved Uncontaminated-fluid Reconcilable Im-

mersed Boundary Method
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Appendix A. Equations of motion in an accelerating frame of
reference

Consider a two-phaseflow in afiniteflowvolumeV in physical space
as an ensemble of spherical particles as shown in Fig. 6. At time t, thenth
particle is characterized by its position vector X(n)(t) and its velocity
vector V(n)(t). A Lagrangian description is used for the particles and an
Eulerian description is used for describing the motion of the fluid.

Denoting the velocity andpressurefields of thefluid byu(x, t),p(x, t)
respectively, the governing equations of motion for the fluid phase in a
reference frame E fixed in space (laboratory frame) are:

∂ui

∂xi
= 0; ðA:1Þ
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∂ui

∂t + uj
∂ui

∂xj
= − 1

ρf

∂p
∂xi

+ νf
∂2ui

∂xj∂xj
: ðA:2Þ

In the above equation, ρf, νf are the density and kinematic viscosity
of the fluid respectively. These equations are to be solved with the
boundary conditions u=V(n)(t) on ∂Vs

(n)(t). Here, ∂Vs
(n)(t) is the

surface of the nth particle whose spatial location changes with time
because of the motion of the particle. The governing equations of
motion for the particles in the laboratory frame are:

m
dV nð Þ

i

dt
= −∫∂v nð Þ

s tð Þpn
nð Þ
i dA + μf∫∂v nð Þ

s tð Þ
∂ui

∂xj
n nð Þ
j dA ðA:3Þ

where μ f=ρfνf is the dynamic viscosity of the fluid. In the above
equation, nj(n) denotes the component of the normal pointing outward
from the surface of the nth particle.

The objective here is to solve the equations of motion of both the
phases in a reference frame that moves with the mean velocity of the
particles. Since the particles will be accelerating in the laboratory
frame, the new reference frame denoted

�
E will be a non-inertial

frame of reference. Let the velocity and acceleration of
�
Ewith respect

to the laboratory frame E be Vf(t) and Af(t) respectively. The
transformation rules between the two frames are:

u� = u−Vf ;

x� = x−∫t
0Vf t′ð Þdt′

t� = t:

ðA:4Þ

Effecting the transformation rules defined above into Eq. (A.2) the
governing equations of motion for the fluid phase in E are (see [40]
for details of the derivation)

∂ u�i

∂ x�i

= 0; ðA:5Þ

∂ u�i

∂ t�
+ uj

∂ u�i

∂ x�j

= − 1
ρf

∂p
∂ x�i

+ νf
∂2 u�i

∂ x�j∂ x�j

−Af ;i: ðA:6Þ

It should be noted that the pressure being a scalar remains the
same in both the frames. Following the notation of [29], the
momentum equation in Eq. (A.6) can be rewritten as

∂ u�i

∂ t�
+ S

�
i = − 1

ρf
g�i + νf

∂2 u�i

∂ x�j∂ x�j

−Af ;i ðA:7Þ

where S̄ and ḡ respectively are the convective and pressure gradient
terms in Ē. It is assumed that the particle assemblies are homogeneous
at all times. If the particle configuration is homogeneous then the
ensemble averaged quantities can be estimated by volume averaging.
The flow quantities can be decomposed as a sum of the volumetric
mean and a fluctuating part. For instance, the pressure gradient can be
decomposed as ḡ= 〈ḡ〉V + ḡ′ where, the volumetric mean pressure
gradient 〈ḡ〉V is defined as

〈 g�〉V =
1
V
∫V g�dV: ðA:8Þ

In the above equation, V is the volume of the physical domain.
Thus, Eq. (A.7) can be rewritten as:

∂ u�i

∂ t�
+ S�i = − 1

ρf
〈 g�i〉V−

1
ρf

∂ψ′

∂ x�i

+ νf
∂2 u�i

∂ x�j∂ x�j

−Af ;i: ðA:9Þ
In the above equation, ḡ′ is written as the gradient of a fluctuating
pressure ψ′. In a similar fashion averaged fluid velocity can be
estimated by averaging the fluid velocity fields over the fluid volume
i.e.,

〈 u� fð Þ
i 〉=

1
Vf

∫Vf
u�idVf : ðA:10Þ

where Vf is the volume of the region occupied by the fluid. The
evolution equation for the phasic averaged fluid velocity can be
obtained by integrating Eq. (A.9) over the fluid volume. The resulting
equation is:

Vf
d

d t�〈
u� fð Þ
i 〉 = − 1

ρf
〈 g�i〉VVf +

1
ρf

∫∂Vs
ψ′n sð Þ

i dA−νf∫∂Vs

∂ u�i

∂ x�j

n sð Þ
j dA−Af ;iVf :

ðA:11Þ

In the above Equation ∂Vs denotes the solid surface bounding the fluid
volume and nj

(s) denotes the component of normal vector pointing
outward from the surface of the solid particles. Dividing the entire
equation by the fluid volume Vf and rearranging the terms gives:

− 1
ρf

〈 g�i〉V =
d

d t
〈 u� fð Þ

i 〉 +
1

1−ϕð ÞV − 1
ρf

∫∂Vs
ψ′n sð Þ

i dA + νf∫∂Vs

∂ u�i

∂ x�j

n sð Þ
j dA

2
4

3
5 + Af ;i:

ðA:12Þ

Now, the equations of motion for the particles in the reference
frame E will be derived. The velocity of the nth particle transforms as
V
−(n) (t)=V(n) (t)−Vf (t). Substituting the transformation rules in
Eq. (A.3), the equation of motion for the nth particle is obtained as:

m
d V
� nð Þ

i

dt
= −〈 g�i〉VV

nð Þ + ρf − 1
ρf

∫∂V nð Þ
s tð Þψ

′n nð Þ
i dA + νf∫∂V nð Þ

s tð Þ
∂ u�i

∂ x�j

n nð Þ
j dA

2
4

3
5−mAf ;i:

ðA:13Þ

The phasic mean solid velocity can be estimated as u
sð Þ
=

1=Np
� �

∑Np

n = 1V
nð Þ where Np is the total number of particles in the

domain. The evolution equation for the mean solid velocity can be
derived by summing Eq. (A.13) over all the particles. The resulting
equation is:

ρpVs
d

d t�〈
u� sð Þ
i 〉 = −〈 g�i〉VVs + ρf − 1

ρf
∫∂Vs

ψ′n sð Þ
i dA + νf∫∂Vs

∂ u�i

∂ x�j

n sð Þ
j dA

2
4

3
5−ρpVsAf ;i

ðA:14Þ

where ρp is the density of the particles and Vs is the total volume
occupied by the solid phase. It should be noted that the surface
integrals in Eq. (A.13) are taken over the surface of the nth particle
and in Eq. (A.14), the surface integration is over all the solid surfaces.
This is because,

∫∂Vs
= ∑

Np

n=1
∫∂V nð Þ

s
:

Eq. (A.14) can be rewritten as

d

d t�〈
u� sð Þ
i 〉 = − 1

ρp
〈 g�i〉V +

1
ϕV

ρf
ρp

− 1
ρf

∫∂Vs
ψ′n sð Þ

i dA + νf∫∂Vs

∂ u�i

∂ x�j

n sð Þ
j dA

2
4

3
5−Af ;i:

ðA:15Þ
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Rearranging the above equation, an equation for themean pressure
gradient can be obtained as

− 1
ρp

〈 g�i〉V =
d

dt
�〈 u� sð Þ

i 〉−
1
ϕV

ρf
ρp

− 1
ρf

∫∂Vs
ψ′n sð Þ

i dA + νf∫∂Vs

∂ u�i

∂ x�j

n sð Þ
j dA

2
4

3
5 + Af ;i:

ðA:16Þ

The total drag force on the particles denoted F
�

D is given by

F
�

D;i = ρf − 1
ρf

∫∂Vs
ψ′n sð Þ

i dA + νf∫∂Vs

∂ u�i

∂ x�j

n sð Þ
j dA

2
4

3
5:

Using the above notation, Eqs. (A.12) and (A.16) can be simplified
and summarized as follows:

− 1
ρf

〈 g�i〉V =
d

d t
�〈 u� fð Þ

i 〉 +
1

1−ϕð ÞV
F
�

D;i

ρf
+ Af ;i ðA:17Þ

− 1
ρp

〈 g�i〉V =
d

d t
�〈 u� sð Þ

i 〉−
1
ϕV

F
�

D;i

ρp
+ Af ;i: ðA:18Þ

The above two systems of equations contain two unknowns
namely themean pressure gradient 〈ḡ〉V and the frame acceleration Af,

i. The frame acceleration can be eliminated from the above equations
to give a general expression for the mean pressure gradient:

1
ρf

− 1
ρp

 !
〈 g�i〉V =

d

d t
�〈 u� sð Þ

i 〉−
d

d t
�〈 u� fð Þ

i 〉−
F
�

D;i

V
1

ϕρp
+

1
1−ϕð Þρf

" #
:

ðA:19Þ

The fixed particle simulations described in the paper are a special
case where the particles are so massive that they do not move i.e.,
ρp→∞ and the rate of change of the mean solid velocity is zero. So
taking the limit ρp→∞ in Eq. (A.19), we get

1
ρf

〈 g�i〉V = − d

d t�〈
u� fð Þ
i 〉−

F
�

D;i

V
1

1−ϕð Þρf
ðA:20Þ

which is the same as the one derived by [29].
The frame acceleration can be obtained from Eq. (A.18) as:

Af ;i = − 1
ρp

〈 g�i〉V−
d

d t�〈
u� sð Þ
i 〉 +

1
ϕV

F
�

D;i

ρp
ðA:21Þ

It can be seen that the mean pressure gradient depends upon the
rate of change of the fluid and solids velocity. Eqs. (A.19) and (A.21)
can be discretized in time as follows:

An + 1
f ;i = − 1

ρp
〈 g�i〉

n + 1
V −〈 u� sð Þ

i 〉
n + 1−〈 u� sð Þ

i 〉
n

Δ t�
+

1
ϕV

F
�n

D;i

ρp
: ðA:24Þ

It is desired that themean solids velocity be zero and that themean
fluid velocity be driven to a desired value 〈ū(f)〉d which is set by the
Reynolds number. Substituting 〈ū(f)〉n+1=〈ū(f)〉d and 〈ū(s)〉n+1=0 in
the above two equations and noting that the initial mean solids
velocity is zero, the resulting numerical equations are:

1
ρf

− 1
ρp

 !
〈 g�i〉

n + 1
V = −〈 u� fð Þ

i 〉
d
−〈 u� fð Þ

i 〉
n

Δ t�
−

F
�n

D;i

V
1

ϕρp
+

1
1−ϕð Þρf

" #

ðA:25Þ

and

An + 1
f ;i = − 1

ρp
〈 g�i〉

n + 1
V +

1
ϕV

F
�n

D;i

ρp
: ðA:26Þ

From the above analysis it can be seen that there are two free
parameters in this problem namely the mean pressure gradient and
the frame acceleration. The mean pressure gradient can be thought of
as a means to set the desired average fluid velocity and the frame
acceleration can be seen as a time varying body force which will be
tuned at every instant to give the desired mean solids velocity.

Appendix B. Estimation of granular temperature from the DNS of
freely evolving suspensions

Solving the equations of motion in an accelerating frame of
reference using Eqs. (A.25) and (A.26) ensures that: (i) the mean
solids velocity is zero and (ii) the mean fluid velocity is such that the
desired Reynolds number (based on slip velocity) is attained. At every
time instant, the mean solids velocity is estimated from the DNS as

u sð Þn o
tð Þ = 1

Np
∑
Np

n=1
V nð Þ

: ðB:1Þ

The mean velocity of the solids is denoted {u(s)} to point out the
fact that it is only an estimate to the truemeanwhich is denoted 〈u(s)〉.
The fluctuating velocity of the nth particle v′(n) is computed from DNS
as

v′ nð Þ tð Þ = V nð Þ tð Þ− u sð Þn o
tð Þ: ðB:2Þ

At every time instant, the granular temperature is estimated using
the formula

Tf g tð Þ = 1
3Np

∑
Np

n=1
v′ nð Þ tð Þ·v′ nð Þ tð Þ
� �

: ðB:3Þ

It is important to note that in Eq. (B.2) particle velocity fluctuations
are defined about the mean solids velocity which is estimated as a
number average and not as a time average. Fig. 7(a) and (b) shows the
evolution of mean solids velocity and mean fluid velocity in the
moving frame and the frame velocity with respect to the laboratory
frame for solid to fluid density ratios of 10 and 1000 respectively. The
volume fraction and the mean flow Reynolds number for both
suspensions are 0.2 and 20 respectively. From these figures we
observe that the frame velocity (shown by ▽) varies linearly with
time. Imbalance between the mean pressure gradient and the drag
force acting on the particles causes the particles to accelerate in the
laboratory frame. Acceleration of the moving frame accounts for this
imbalance and ensures that the mean solids velocity is zero in the
moving frame.We can clearly see from Fig. 7(a) and (b) that themean
solids velocity (shown by open circles) is indeed zero and that the
mean fluid velocity (shown by□) is such that the desired slip velocity
is attained. Thus, we can conclude that the granular temperature we
estimate from DNS is indeed a measure of the strength of the particle
velocity fluctuations.



Fig. 7. Evolution of the mean solids velocity and mean fluid velocity in the moving
frame and the frame velocity with respect to the laboratory frame obtained from the
DNS of a freely evolving suspension of volume fraction 0.2, Rem=20. (a) Shows the
results for a solid to fluid density ratio of 10 while (b) shows the results for a solid to
fluid density ratio of 1000. In both figures, the mean solids velocity (open circles), the
mean fluid velocity (□) and the frame velocity (▽) are scaled by the desired mean slip
velocity.
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