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A third-order quadrature-based moment method for simulating dilute and moderately dilute fluid–particle
flows has been implemented with full coupling in a computational fluid dynamics code. The solution al-
gorithm for the particle phase uses a kinetic-based finite-volume technique to solve the velocity moment
equations derived from kinetic theory. The procedure to couple the particle-phase volume-fraction and
momentum equations with the Eulerian solver for the fluid phase is explained in detail. As an example
application, simulations of a particle-laden vertical channel flow at fluid-phase Reynolds number 1379
and particle Stokes numbers 0.061 and 0.61 were carried out. The fluid and particle velocities, particle-
phase volume fraction and granular temperature were observed to reach a steady state in the case of
Stokes number 0.061, while instabilities that led to the formation of structures and initiated the particle
segregation process were observed in the case with the higher Stokes number. These results are validated
against results from a classical two-fluid model derived from the kinetic theory of granular flows in the
small Knudsen number limit, and Euler–Lagrange simulations of the same flow.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Dilute gas–particle flows represent an important family of mul-
tiphase flows in chemical engineering applications. A significant
example is the flow in risers of circulating fluidized-bed (CFB)
reactors, which were developed to increase the performance of
traditional fixed bed reactors in particular fields of application like
fluid catalytic cracking (FCC), catalytic combustion, coal gasification,
Fischer–Tropsch synthesis, calcination processes and also elimina-
tion of pollutants and dust incineration. The success of CFB units
is due to the significant increase in the contact efficiency between
the phases, the reduced axial dispersion and the improved thermal
control they can offer. The increasing importance of these systems
underlines the need for appropriate mathematical models able to
capture the complex fluid dynamical behavior of these units (Avidan,
1995; Brereton, 1995; Dry and Beeby, 1995; Grace and Bi, 1997).

Many works have been published in the literature on the mathe-
matical modeling of risers using the two-fluid methodology (Enwald
et al., 1996), with different closures to describe the particle-phase
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properties. Syamlal and Gidaspow (1985) and Gidaspow (1986) de-
veloped hydrodynamic models for CFB reactors, accounting for heat
transfer and introducing a normal stress modulus for the particle
phase to prevent the maximum particle packing limit from being
exceeded. Sinclair and Jackson (1989) developed the first stationary
hydrodynamic model able to predict the particulate phase stresses
using moment closures derived from the kinetic theory of granular
gases, as a function of the particle fluctuating energy, the so-called
granular temperature. Hrenya and Sinclair (1997) studied the in-
fluence of turbulence both on the transport equations and on the
kinetic theory closure equations, leading to a reformulation of the
dissipation term of the granular energy, which resulted in a reduced
sensitivity of the model to the value of the particle restitution coef-
ficient. Benyahia et al. (2000) and Arastoopour (2001) simulated a
FCC riser using the two-fluid approach with kinetic theory moment
closures. Peirano and Leckner (1998), Peirano et al. (2002) and De
Wilde et al. (2005) adopted a model that couples a two-equation
turbulence model with a set of two equations for the granular
temperature and for the gas–particle velocity correlation. Agrawal
et al. (2001) studied the formation of meso-scale structure in high-
resolution two-fluid simulations, showing that two-fluid equations
predict a number of structures with higher concentration of parti-
cles, which become more and more evident as the quality of the
discretization of the computational domain is improved, and un-
derlined the importance of introducing sub-grid scale models when
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performing coarse-grid simulations without neglecting the effect of
these structures.

The two-fluid equations and the kinetic theory closures used
in two-fluid models (Gidaspow, 1994; Peirano and Leckner, 1998),
however, are obtained with strong assumptions on the nature of the
flow, assuming that it is collisionally dominated and nearly at equi-
librium, which corresponds to consider a particle-phase Knudsen
number close to zero. This leads to inconsistencies and erroneous or
missing predictions of physical phenomena when these models are
applied to dilute fluid–particle flows, where rarefaction effects are
not negligible. In order to overcome the shortcomings of two-fluid
models, Simonin (1991) adopted a moment method based on the
Grad (1949) approach to simulate particle-laden jets and to study
non-equilibrium phenomena in dilute gas–particle flows (Sakiz and
Simonin, 1998). Recently Desjardin et al. (2008) showed that two-
fluid models are unable to correctly capture particle trajectory cross-
ing, seriously compromising their ability of correctly describing any
velocity moment for finite, non-zero, Stokes numbers, and clarified
that the particle segregation captured by two-fluid models for finite
Knudsen numbers is artificially high due to their mathematical for-
mulation. This limitation is clearly evident in the example reported
in their work of very dilute crossing jets, where a discontinuity in the
velocity field originates where the jets cross each other, however, it
is not limited to extremely dilute flows. In particular it can affect riser
flows, where the particle volume fraction is not extremely low, but
locally can be low enough to give origin to particle trajectory cross-
ing. In the same work, Desjardin et al. shown that an approximate
solution of the kinetic equation, the foundation of the kinetic the-
ory of granular gases, can be obtained using a two-node quadrature
approach, which resulted in the ability to capture particles trajec-
tory crossing correctly for finite Stokes numbers and infinite Knud-
sen number. Following this approach, in this work we describe the
implementation of a third-order quadrature-based moment method
(Fox, 2008) in a computational fluid dynamics (CFD) code and its
coupling with a fluid solver to describe fluid–particle flows. The im-
plementation is then tested by simulating a fluid–particle flow in a
vertical channel, validating the results with the predictions of a two-
fluid model and Euler–Lagrange simulations of the kinetic equation.

The remainder of the paper is organized as follows. In Section
2 the equations of the computational model for the fluid and the
particle phases are described. In Section 3 the implementation of
the quadrature-based method and the coupling procedure with the
fluid solver are explained in detail. Finally, in Section 4, the results
of the simulations of a fluid–particle flow in a vertical channel are
presented and discussed.

2. The mathematical model

In this section the governing equations of the fluid and particle
phases are briefly presented. The principles of the quadrature ap-
proximation of the kinetic equation are also discussed.

2.1. Fluid-phase governing equations

The behavior of the fluid phase is described by the classical conti-
nuity and momentum equations solved in multi-fluid models (Drew,
1971; Syamlal et al., 1993; Gidaspow, 1994; Enwald et al., 1996).
The fluid continuity equation has the form

�
�t

(�f�f ) + ∇(�f�fUf ) = 0, (1)

and the fluid momentum equation is given by

�
�t

(�f�fUf ) + ∇(�f�fUfUf ) = ∇(�fsf ) − �f∇p + �f�fg + Mfp, (2)

where �f , �f , Uf are, respectively, the fluid-phase volume fraction,
density and mean velocity, Mfp is the momentum exchange term
due to the drag between the fluid and particle phases, and g is the
gravitational acceleration vector.

For incompressible fluids, the fluid pressure p is used to satisfy
the continuity equation. The fluid phase is assumed to be Newtonian,
and its stress tensor sf is given by

sf = �f (∇Uf + (∇Uf )
T) − 2

3�f (∇ · Uf )I, (3)

where �f is the fluid dynamic viscosity and I the unit tensor.

2.2. Particle-phase governing equations

The particle phase is described assuming that particles are
smooth, monodisperse, non-cohesive spheres. As a consequence,
its governing equation is represented by a kinetic equation for the
particle number density function f (t,x, v), defined so that fdx dv is
the average number of particles with velocity between v and v+ dv
and position between x and x+dx, at time t. The form of the kinetic
equation is (Chapman and Cowling, 1961; Cercignani et al., 1994;
Struchtrup, 2005)

�f
�t

+ v · �f
�x

+ �
�v

(
f

F
mp

)
= C, (4)

where C represents the rate of change in the number density func-
tion due to binary collisions between the particles, and F is the force
acting on each particle, which includes gravity and drag.1 It is worth
noting that the quadrature-based moment method developed in this
work can be applied to more complicated forms of the kinetic equa-
tion (e.g., aggregation, diffusion in velocity space, etc.). For each new
case, it suffices to derive the moment equations starting from the
kinetic equation.

In this work the collision term C is described using the
Bhatnagar–Gross–Krook collision operator (Bhatnagar et al., 1954):

C = 1
�c

(fes − f ), (5)

where �c is the collision time and fes is the equilibrium distribution
function, extended to account for inelastic collisions:

fes = N

[det(2�k)]1/2
exp

(
−1
2
(vp,i − Up,i)k

−1(vp,j − Up,j)
)
, (6)

where k−1 is the inverse of the matrix k, defined by

k= ��2	I + (��2 − 2�� + I)r (7)

with �=1/Pr, and �= (1+e)/2, being N the number density of parti-
cles (zero-order moment), Up the mean particle velocity (first-order
moment), e the restitution coefficient, 	p the granular temperature,
and r the velocity covariance matrix. In this work �=1, being Pr=1
in the standard BGK model (Struchtrup, 2005).

The expression for the collision operator in Eq. (5) represents a
linear approximation of the complete Boltzmann collision integral,
valid under the assumption of collision-dominated flows with e near
unity. However, any closed collision kernel, including the full Boltz-
mann collision integral valid for arbitrary e, can be used with the
procedure presented in this work (Fox, 2008).

A convenient approach to solve the Boltzmann equation, as an
alternative to the expensive direct solvers (Beylich, 2000; Carrillo

1 Only the drag force and the gravity are considered here. Thus, we are implicitly
assuming that the particles are much denser than the fluid. However, F can include
other forces such as, for example, buoyancy and electrostatic forces acting on the
particles.
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et al., 2007) and Lagrangian methods (Bird, 1994), is to consider
a set of moments of the distribution function f (Struchtrup, 2005),
and track their evolution in space and time, instead of aiming at
reconstructing the exact shape of f. This leads to an approximate
solution of the kinetic equation, which is, however, satisfactory for
many engineering applications, like the simulation of granular flows
and fluid–particle flows.

In this work a set of 20 moments W3 of f up to the third order
defined by

W3 = (M0,M1
1,M

1
2,M

1
3,M

2
12,M

2
13,M

2
22,M

2
23,M

2
33,

M3
111,M

3
112,M

3
113,M

3
122,M

3
123,M

3
133,M

3
222,

M3
223,M

3
233,M

3
333)

is considered, where the superscripts represent the order of the cor-
responding moment (Fox, 2008). Each moment is defined through
integrals of the distribution function as

M0 =
∫

f dv, M1
i =

∫
vif dv,

M2
ij =

∫
vivjf dv, M3

ijk =
∫

vivjvkf dv. (8)

Note that the particle-phase volume fraction �p and mean particle
velocity Up are related to these moments by

�p = VpM0 (9)

and

�p�pUp,i = mpM1
i , (10)

where mp = �pVp is the mass of a particle with density �p and vol-
ume Vp = �d3p/6. In this work, mp is constant. Likewise, the particle
temperature is defined in terms of the trace of the particle veloc-
ity covariance matrix, which is found from M2

ij and lower-order mo-
ments. By definition, �f +�p =1 and this relation must be accounted
for when solving a fully coupled system for the fluid and particle
phases.

The application of the definition of the moments to both sides of
Eq. (4) allows the moment transport equations to be derived. If the
force acting on each particle is divided into two components, one
due to the drag and the other due to gravity, the set of 20 transport
equations, one for each moment in W3 is given by

�M0

�t
+ �M1

i

�xi
= 0,

�M1
i

�t
+

�M2
ij

�xj
= A1

i + giM
0,

�M2
ij

�t
+

�M3
ijk

�xk
= C2

ij + A2
ij + giM

1
j + gjM

1
i ,

�M3
ijk

�t
+

�M4
ijkl

�xl
= C3

ijk + A3
ijk + giM

2
jk + gjM

2
ik + gkM

2
ij , (11)

where A1
i , A

2
ij and A3

ijk are the source terms due to the acceleration

acting on each particle, while C2
ij and C3

ijk are those due to the colli-
sion operator. It is worth noting that the force term only affects the
moments of order higher than zero, because it is assumed that the
number density of the particles is conserved. Also, the collision term
only influences the moments of order higher than one, because of
the assumption that collisions do not change the particle number
density (no aggregation and breakage phenomena), and do not in-
fluence the mean momentum of the particle phase. In general, the

conservative equations for the particle phase needed for coupling
with the fluid phase are found by multiplying the expressions in
Eq. (11) by mp. For simplicity, hereinafter we will assume that all of
the velocity moments have been multiplied by Vp, so that the zero
order moment corresponds to the particle phase volume fraction
M0 = �p.

The set of transport equations (11) is not closed, because each
equation contains the spatial fluxes of the moments of order imme-
diately higher, and the source terms due to the drag force and to
collisions. As a consequence, closures have to be provided for these
terms. In quadrature-based moment methods Gaussian quadrature
formulas are used to provide closures to the source terms in the mo-
ment transport equations by introducing a set V
 of 
 weights n�
and abscissas U�, which are determined from the moments of the
distribution function using an inversion algorithm, and approximat-
ing the distribution function with a sum of Dirac delta functions:

f (v) =

∑

�=1

n��(v − U�). (12)

In the following discussion we will consider a set of 
 = 8 weights
and abscissa V8 per each velocity component, which are obtained by
considering two quadrature nodes in each direction of velocity phase
space. The inversion algorithm to obtain V8 from the set of moments
W3 is explained in detail in Fox (2008) and summed up in Appendix
A. Once the weights and abscissas are known, the moments can be
computed as a function of the quadrature weights and abscissas by
approximating the integrals in Eq. (8) with summations:

M0 =

∑

�=1

n�, M1
i =


∑
�=1

n�U�i,

M2
ij =


∑
�=1

n�U�iU�j, M3
ij =


∑
�=1

n�U�iU�jU�k. (13)

The source terms due to drag and gravity are computed as

A1
i =


∑
�=1

n�

(
FDi�
mp

+ gi

)
,

A2
ij =


∑
�=1

n�

[(
FDi�
mp

+ gi

)
Uj� +

(
FDj�
mp

+ gj

)
Ui�

]
,

A3
ijk =


∑
�=1

n�

[(
FDi�
mp

+ gi

)
Uj�Uk� +

(
FDj�
mp

+ gj

)
Uk�Ui�

+
(
FDk�
mp

+ gk

)
Ui�Uj�

]
, (14)

where the drag force terms are computed as

FD� = mp

�D�
(Uf − U�) = KQMOM

fp,� (Uf − U�), (15)

with the drag time for each abscissa given by

�D� = 4dp�p

3�f�fCD(Rep�,�f )|Uf − U�| . (16)

The particle Reynolds number for each abscissa is defined by2

Rep� = �fdp|Uf − U�|
�f

, (17)

2 A mean particle Reynolds number can be defined by

Rep = 1
M0


∑
�=1

n�Rep� .

.
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and the drag coefficient CD is provided by the Schiller and Naumann
(1935) correlation, modified to account for moderately dense flows
(�f >0.8) as in Wen and Yu (1966):

CD(Rep,�f ) = 24
�fRep

[1 + 0.15(�fRep)
0.687]�−2.65

f . (18)

It is worth underlining that in the evaluation of the force term, the
relative velocity vector Uf −U� is defined as a function of the quadra-
ture abscissas U�, instead of the mean particle velocity. As a conse-
quence, the drag time and the drag force have different values for
each quadrature node. Note also that for small Rep (i.e., the Stokes
flow limit), the drag coefficient reduces to CD(Rep,�f )=24/(�3.65

f Rep)
and �D� will be the same for all abscissas.

For collisions, the source terms in the moment transport equa-
tions are given by

C2
ij = �p

�c
(�ij − ij),

C3
ijk = 1

�c
(�ijk − M3

ijk). (19)

For hard-sphere collisions, the collision time is defined by

�c = �1/2dp

12�pg0	
1/2

, (20)

with the granular temperature 	 defined in terms of the moments
by

	 = 1
3 (11 + 22 + 33), (21)

where

11 = M2
11

M0 −
(
M1

1
M0

)2

,

22 = M2
22

M0 −
(
M1

2
M0

)2

,

33 = M2
33

M0 −
(
M1

3

M0

)2

. (22)

In Eq. (20), g0 is the radial distribution function, which depends on
�p, and is used to account for the increased collision frequency in
moderately dense flows. In this work, we use the model proposed
by Carnahan and Starling (1969):

g0 = 1
1 − �p

+ 3�p

2(1 − �p)
2 + �2

p

2(1 − �p)
3 . (23)

For the dilute flow considered in Section 4, g0 ≈ 1. It is worth re-
calling that in the kinetic equation all particle–particle interactions
(e.g., particle pressure, particle viscosity, etc.) are described by the
collision term. Hence, there is no need to add additional terms in the
moment transport equations to describe such processes. Finally, re-
call that in the derivation of the two-fluid model, the collision time
is assumed to be much smaller than all other time scales in the flow
(i.e., the particle-phase Knudsen number is assumed to be small).
By solving directly for the velocity moments, no such assumptions
are made in quadrature-based moment methods. However, for small
values of the Knudsen number, when the radial distribution function
becomes large, the two-fluid model will be computationally more
efficient because the fast collision time scales are replaced by con-
situtive equations for the stresses and energy flux. A comparison of
the computational times required to perform the simulations con-
sidered in this work is reported in Appendix D.

An important point for obtaining a stable solution to the moment
transport equations is represented by the closure provided for the
moment spatial fluxes. These fluxes are represented by the second
term on the left-hand side of Eq. (11), and are computed according
to their kinetic definition (Perthame, 1990; Desjardin et al., 2008;
Fox, 2008). First each moment involved in the expression for the
fluxes is decomposed into two contributions, as shown in Eq. (24) for
the zero-order moment, whose spatial flux involves the first-order
moments:

M1
i =

∫ 0

−∞
vi

(∫
f dvj dvk

)
dvi +

∫ +∞

0
vi

(∫
f dvj dvk

)
dvi. (24)

The integrals are then approximated using the Dirac-delta represen-
tation of the distribution function f leading to

M1
i =


∑
�=1

n� min(0,Ui�) +

∑

�=1

n� max(0,Ui�). (25)

In a similar manner, the decomposition is applied to all other mo-
ments, to compute the fluxes as a function of the weights and ab-
scissas. This procedure to evaluate the spatial fluxes is essential
to ensure the realizability of the set of moments by means of the
quadrature approximation, or, in other words, that the set of weights
and abscissas actually represent a real distribution function. It is
worth to notice that the third-order moment spatial flux depends
on fourth-order moments, which are not provided by the solution of
the transport equations (11). Closures for M4

ijkl are obtained in terms
of the quadrature representation of the distribution function as (Fox,
2008)

M4
ijkl =


∑
�=1

n�U�iU�jU�kU�l. (26)

The explicit closure for the third-order moments spatial fluxes is
implicit in Eqs. (28) and (29).

As the reader might have noticed, the QMOM procedure pro-
posed in Fox (2008) and summarized here, significantly differs from
the quadrature method of moments applied to population balance
equations (Marchisio and Fox, 2003) due to the different nature of
the velocity distribution function with respect to the particle size
distribution. In the problem addressed in this work, the spatial trans-
port involves the quadrature abscissas, requiring special treatment
in the evaluation of the moment spatial fluxes, while in the case of
a particle size distribution, weights and abscissas are transported as
passive scalars.

3. Implementation in a CFD code

The quadrature-based moment method discussed in the previous
section has been implemented in theMFIX (Syamlal et al., 1993)mul-
tiphase computational fluid dynamics (CFD) code and fully coupled
with its solver for the fluid phase, to simulate fluid–particle flows.
We will refer to the resulting simulation code as MFIX-QMOM. The
two-fluid model in MFIX uses the finite-volume approach (Ferziger
and Peric, 2002) on a structured computational grid with fully stag-
gered arrangement of pressure and velocity, with the velocity stored
at the cell-face centers, and the pressure stored at cell centers. The
moment transport equations (Eqs. (11)) are solved using a similar ar-
rangement, with all the variables stored at the cell centers, because
the staggered arrangement is not necessary since the pressure gra-
dient is absent from the equations and hence the risk of the checker-
boarding effect is absent. As a consequence, the difference in the
locations at which the velocities are stored has to be accounted for
when the coupling between the phases is implemented. In particu-
lar, the QMOM algorithm needs the fluid-phase velocity at the cell



A. Passalacqua et al. / Chemical Engineering Science 65 (2010) 2267 -- 2283 2271

center, which is obtained by interpolating the values provided by
the MFIX fluid solver at the cell-face centers. Vice-versa, the drag
force provided to the fluid solver has to be computed as a function of
the particle velocities on the cell-face centers, which are computed
by interpolating the cell-centered values provided by the QMOM
solver.

3.1. Solution of the fluid-phase equations

The fluid-phase equations are solved using the SIMPLE algorithm
(Patankar, 1980) with the partial elimination procedure (Spalding,
1980) to deal with the coupling term due to the drag, as described in
detail in Syamlal (1998). The fluid-phase volume fraction is provided
from the solution to the moment transport equations. In practice,
the coupling between the two solvers is very similar to that used in
discrete element methods (DEM) for fluid–particle flows. An impor-
tant difference with DEM is, however, the absence of statistical noise
in the QMOM solver. This generally leads to faster convergence of
the fluid-phase solver than in DEM simulations.

3.2. Solution of the moment transport equations

The moment transport equations (Eqs. (11)) are discretized
according to the finite-volume technique, using a second-order
Runge–Kutta scheme for time integration. Before proceeding with
the description of the QMOM solver, it is worth reiterating that the
moment transport equations are rescaled so that the zero-order
moment M0 represents the particle-phase volume fraction instead
of the number density. This operation is important to ensure the
stability and accuracy of the quadrature-inversion algorithm, which
would be compromised by the high round-off error caused by the
computation in terms of the number density. As noted earlier, the
scaling of the equations is simply performed by multiplying them
by the particle volume Vp, and by modifying the collision and drag
terms accordingly. After this rescaling, the collision time �c and drag
time �D� are unchanged. The rescaled weights n� can then be in-
terpreted as representing the volume fraction of the corresponding
abscissa.

The steps in the QMOM solver for the solution of the moment
transport equations can be summed up as follows:

1. Initialize weights and abscissas in V8.
2. Compute the moments in W3 using Eq. (13). Note that it is not

necessary to initialize the moments directly, because they can
be computed as a consequence of the specified weights and
abscissas.

3. Advance the moments inW3 over a half time step �t/2, and, using
a time-split procedure:

• account for the spatial fluxes,
• account for collisions,
• account for the body and drag forces acting on particles,
• apply boundary conditions.

4. Apply the inversion algorithm to the new set of moments to com-
pute the updated weights and abscissas.

5. Recompute the moments from the weights and abscissas using
Eq. (13), performing the projection step (Fox, 2008), necessary to
ensure that the transported moments are consistent with their
quadrature representation.

6. Advance the moments over a half time step �t/2 and repeat the
same operations performed from steps 3 to 5 for the full time step.

7. Repeat from step 3.

The time step used in the QMOM solver is evaluated on the ba-
sis of the collision time �c, the drag time �D, and the Courant

Fig. 1. Schematic representation of a computational cell to illustrate how the moment
spatial fluxes are computed.

number based on the maximum abscissas in the whole computa-
tional domain to ensure the stability of the solution. The key steps
in the algorithm are illustrated in detail in the following subsec-
tions. Note that, due to hyperbolic nature of the moment transport
equations, it is theoretically possible to use a CFL number of unity
without losing stability. Thus the QMOM solver will be particularly
efficient for flows where the collision time does not control the time
step (i.e., sufficiently large Knudsen number). In such cases, the ef-
ficiency of the gas-phase flows solver will be critical for the overall
efficiency.

3.3. Computation of the moment spatial fluxes

The moment spatial fluxes are computed as a function of the
quadrature weights and abscissas, following their kinetic definition,
as discussed earlier. To explain how the computation of the fluxes is
performed, let us consider the computational cell in Fig. 1, and intro-
duce four sets of weights and abscissas: V−


,l, V
+

,l, V

−

,r , V

+

,r . These sets

of weights and abscissa are found by interpolating the cell-centered
values of the weights and abscissa on the faces of the computational
cell. If we consider the horizontal direction in Fig. 1 and adopt a
first-order scheme, we have

V−

,l = {n−

�,l = ni−1,j
� ;U−

�,l = Ui−1,j
� },

V+

,l = {n+

�,l = ni,j� ;U
+
�,l = Ui,j

� },

V−

,r = {n−

�,r = ni,j� ;U
−
�,r = Ui,j

� },

V+

,r = {n+

�,r = ni+1,j
� ;U+

�,r = Ui+1,j
� }. (27)

At this point the two Riemann fluxes at the left and right cell faces,
Gl and Gr , are computed as follows:
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⎟⎟⎟⎟⎟⎠ , (28)
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G1,r =
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and the net flux in the horizontal direction is then computed as

G1 = G1,r − G1,l. (30)

Using a similar procedure, it is possible to compute the moment
spatial fluxes in each direction, thereby obtaining the flux vector
G= {G1,G2,G3}. The moments are then updated as a consequence of
their spatial fluxes by solving the ODE

dW3

dt
= G (31)

in each computational cell of the domain under consideration.

3.4. Computation of force contributions

The contributions to the evolution of the moments in W3 due to
the forces acting on each particle are directly computed, operating
on the weights and abscissas of the quadrature approximation, by
solving a set of two ODEs:

dn�

dt
= 0,

dUi�

dt
= Fi�

mp
+ gi, (32)

written considering that the body and drag forces do not affect the
quadrature weights because they do not change the number of the
particles, and only influence the abscissas.

3.5. Contribution of collisions

Collisions are accounted for by resolving the differential equation
for the change in the moments due to collisions:

dW3

dt
= C(W3), (33)

where C(W3) is provided by Eq. (19).

3.6. Boundary conditions

The boundary conditions for the moment transport equations
can be specified either in terms of the moments, or in terms of the
weights and abscissas of the quadrature. The latter approach is of-
ten more convenient due to its simplicity. In this work periodic and
wall-reflective boundary conditions are considered. Periodic bound-
ary conditions, where H is the length of the system in the periodic
direction, are specified in terms of the quadrature weights and ab-
scissas as

V
,0 = V
,H , (34)

where V
,0 and V
,H are the set of weights and abscissas in each
cell of the two periodic boundaries of the computational domain.

Once the weights and abscissas are set, the moments at the periodic
boundaries can be computed by means of Eq. (13).

Specularly reflective walls, with particle–wall restitution coeffi-
cient ew, are described by

⎛
⎜⎜⎜⎜⎝

n�

U1,�

U2,�

U3,�

⎞
⎟⎟⎟⎟⎠

i=0

=

⎛
⎜⎜⎜⎜⎝

n�/ew

U1,�

−ewU2,�

U3,�

⎞
⎟⎟⎟⎟⎠

i=1

, (35)

which is written considering a planar wall perpendicular to the sec-
ond direction of the reference frame, located at position i=0, where
i=1 represents the computational cell neighboring thewall. Note that
other types of boundary conditions used in Lagrangian simulations
(e.g., diffuse walls) can be easily accommodated using quadrature.

3.7. Phase coupling

The coupling between the fluid and particle phases is obtained
by means of the momentum exchange term in the fluid momentum
equation and the drag term included in the moment transport equa-
tions. The momentum exchange term in the fluid phase is written
as a function of the quadrature weights and abscissas:

Mfp =

∑

�=1

n�Kfp,�(U� − Uf ), (36)

where Kfp,� =KQMOM
fp,� /Vp. A direct solution of the fluid-phase momen-

tum Eq. (2), with the drag term treated as an explicit source term
is possible when the particle mass loading � = �p�p/(�f�f ) is small,
and the drag force is not too strong. This procedure, however, can
lead to difficult or impossible convergence of iterative solvers when
the particle mass loading is high, and, as a consequence, the drag
effect is strong (Oliveira and Issa, 1994; Karema and Lo, 1999). To
avoid this problem Spalding (1980) proposed the partial elimination
algorithm (PEA), which consists in a manipulation of the momentum
equations of the two phases in order to eliminate the velocity of the
particle phase from the fluid-phase momentum equation and vice
versa. This procedure needs to be modified when QMOM is used to
describe the particle phase, because the mean momentum equation
for the dispersed phase is not solved directly.

The modified PEA procedure is illustrated here for the case of a
fluid phase and a single particle phase. The extension to an arbitrary
number of particle phases is straightforward. To start the derivation
of the method, let us consider the semi-discretized fluid momentum
equationwritten in finite-volume notation (Ferziger and Peric, 2002),
and a semi-discretized momentum equation for the virtual particle
phase, represented by a single quadrature abscissa:

AP
f U

P
f +

∑
f

Af
fU

f
f = Sf − �f∇p +


∑
�=1

Kfp,�(U
P
� − UP

f ), (37)

AP
�U

P
� +

∑
f

Af
�U

f
� = S� + Kfp,�(U

P
f − UP

�), (38)

where AP
f and AP

f are the central coefficients, UP
f and UP

� are at the cell
center, Sf and S� are the source terms and f indicates the contribu-
tions of the neighboring cells. It is convenient to define the quantities

Hf = Sf −
∑
f

Af
fU

f
f ,

H� = S� −
∑
f

Af
�U

f
�, (39)
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and to substitute them into Eqs. (37) and (38), obtaining

AP
f U

P
f = Hf − �f∇p +


∑
�=1

Kfp,�(U
P
� − UP

f ), (40)

AP
�U

P
� = H� + Kfp,�(U

P
f − UP

�). (41)

By solving Eq. (41) for UP
� , an expression for the particle velocity

abscissa is found:

UP
� = ��(H� + Kfp,�U

P
f ),

�� = 1
AP

� + Kfp,�
, (42)

which, substituted into Eq. (40), gives an expression for the fluid
velocity, where the effect of the particle phase is eliminated:

Uf = �f

⎛
⎝Hf − �f∇p +


∑
�=1

Kfp,���H�

⎞
⎠ ,

�f = 1

AP
f +∑


�=1 ��Kfp,�AP
�

. (43)

The expression for the velocity in Eq. (43) is then used to compute
the fluid-phase mass flux �f =�f�fUf to be used in the derivation of
the pressure equation:

∇ · �f = 0, (44)

which can be rewritten as

∇ · (�f���
2
f ∇p) = ∇ ·

⎡
⎣�f�f�f

⎛
⎝Hf +


∑
�=1

��Kfp,�H�

⎞
⎠
⎤
⎦ . (45)

The solution to Eq. (45) provides the updated fluid pressure field, on
the basis of which the fluid velocity estimated using Eq. (43) has to
be corrected to respect the continuity constraint.

4. Simulation of fluid–particle flow in a vertical channel

Simulations of a fluid–particle flow in a periodic vertical chan-
nel (Fig. 2), constituted by two plane parallel walls separated by a
distance D and length H, were performed considering fluid and par-
ticle phases whose properties are given in Table 1. The mass flow
rate of the fluid phase, and hence the average fluid velocity Uf , was
fixed so that the Reynolds number of the fluid phase is lower than
its transition value to turbulence for a single-phase flow between
two parallel plates, where the transition to turbulence occurs near
Ref =�fUfD/�f ≈ 1500. This limit was respected by setting Ref =1379
using the fluid viscosity �f (i.e., the fluid was more viscous than air
at room temperature by a factor of 10). The other physical proper-
ties were chosen to be typical of gas–solid riser flows. Alternatively,
one could use the properties of air and decrease the gravitational
constant in order to keep the particles suspended at a given Ref .
With these physical properties, the average fluid velocity, averaged
over the direction normal to the channel walls, was Uf = 2m/s. The
particle phase was initialized with zero velocity and a uniform vol-
ume fraction in all computational cells equal to 0.04. No-slip bound-
ary conditions at the walls were imposed for the fluid phase in all
the simulations. In order to validate the MFIX-QMOM code, two-
fluid simulations were performed using the standard kinetic theory
implementation in MFIX (Syamlal et al., 1993), solving the trans-
port equation for the granular temperature, and using Johnson and
Jackson (1987) boundary conditions for both the particle velocity and
the granular temperature. A summary of the two-fluid model equa-
tions can be found in Appendix C. Perfectly elastic collisions were

Fig. 2. Schematic representation of the two-dimensional channel considered in the
simulations.

Table 1
Physical properties used in the channel-flow simulations.

Property Value

D (m) 0.1
dp (�m) 80, 252.9
�f (Pa s) 1.74 × 10−4

e 1.0
H (m) 1.0
�f (kg/m3) 1.2
�p (kg/m3) 1500
ew 1.0

assumed between particles and walls, along with a zero specularity
coefficient to mimic specularly reflective walls,3 consistent with the
MFIX-QMOM simulations. A restitution coefficient of e=1 was used
for particle–particle collisions. Gravity was assumed to act in the
downward direction, opposed to the fluid motion, with magnitude
g = 9.81m/s2. Two values of the particle Stokes number (St = 0.061,
0.61), defined by

St = �pd
2
pUf

18�fD
, (46)

were considered by changing the particle diameter dp. In the follow-
ing, we refer to St = 0.061 as the low-Stokes-number flow, and St =
0.61 as the finite-Stokes-number flow. Frictional stresses were ne-
glected in all the simulations, because they can be assumed negligi-
ble in the range of volume fractions considered in this work (Johnson
and Jackson, 1987). In all the simulations, the effect of the volume
occupied by the particles is accounted for in the equations for the
fluid phase; however, for the low-Stokes-number flow both a case
with partial coupling (no effect of the particles drag on the fluid mo-
mentum) and with full coupling are considered for the MFIX-QMOM
simulations. By default, the two-fluidmodel inMFIX has full momen-
tum coupling, and comparisons with MFIX-QMOM are made using
full coupling and the same correlations for the drag law and for g0.
For the finite-Stokes-number flow, Euler–Lagrange simulations were
performed using the improved Lagrangian method described in Garg
et al. (2007, 2009). For these simulations, the collision kernel of
Schmidt and Rutland (2000) was used with g0 = 1, along with the
Schiller and Naumann (1935) drag law (corresponding to CD(Rep,�f=
1)). Thus, comparisons between Euler–Lagrange and MFIX-QMOM
simulations

3 The assumption corresponds to applying a free-slip boundary condition for
the particle phase.



2274 A. Passalacqua et al. / Chemical Engineering Science 65 (2010) 2267 -- 2283

are done with g0 = 1 and CD(Rep, 1). Note that for the low-Stokes-
number flow, the Euler–Lagrange code does not converge due to
the strong coupling between phases; hence, Euler–Lagrange results
are only presented for the finite-Stokes-number flow. For all sim-
ulations, the same uniformly spaced computational grid, composed
of 40 cells in the wall-normal direction and 400 cells in the periodic
direction, was used. The fluid phase equations have been discretized
in space using the second-order accurate superbee scheme imple-
mented into MFIX in both the two-fluid and QMOM simulations. The
same discretization scheme was used for the particle phase equa-
tions in two-fluid simulations, while the moments transport equa-
tions are resolved using the procedure described in this work.

5. Results and discussion

5.1. Low-Stokes-number flow

The phase velocity profiles in the direction orthogonal to the
channel walls predicted by theMFIX-QMOM simulations for the low-
Stokes-number flow are reported in Figs. 3(a) and (b), for the partial
and fully coupled cases, respectively. It is worth noting that the ve-
locity profiles are not time-averaged, rather they are the results ob-
tained at t = 10 s, when the simulations reached steady state. Only
stream-wise profiles are reported for the MFIX-QMOM simulations,
because they are identical along the length of the periodic channel.
The two-fluid model predicts uniform property fields up to t ≈ 10 s,
then flow instabilities start to develop from the zone near the wall
and quickly propagate to the rest of the system, which never reaches
a steady state. It is worth to notice that the predictions of the two-
fluid model as implemented into MFIX is extremely sensitive to the
numerical tolerances for used in the iterative solution procedure.
The default value of the tolerances led to predict an early onset of
the instability, while reducing the value of the numerical tolerances
to 1 × 10−14, very close to the machine precision, caused the in-
stability to be translated in time, as shown in the reported results.
The predictions of the two-fluid model at t = 10 s are reported in
Figs. 3(b) and 5.

For the low-Stokes-number flow, the two phases have almost
identical velocities, leading to a relatively small local particle
Reynolds number Rep (see Fig. 4). This can be understood by con-
sidering the local Stokes number Stp, defined by

Stp = �p
�f

= �pd
2
p|Uf |

18�fD
, (47)

Partial coupling Full coupling

Fig. 3. Phase velocities (m/s) predicted by MFIX-QMOM and two-fluid model (TFM) for low-Stokes-number flow at t = 10 s.

where �p is the particle relaxation time, corresponding to the time
required to adapt to a change in the local fluid velocity field, and
�f is the characteristic time scale of the fluid (D/|Uf |). The values
of the local Stokes number in the MFIX-QMOM simulations are
reported in Fig. 4, which shows that Stp �0.1, indicating that the
particles adapt relatively quickly to the fluid velocity field. Neverthe-
less, the local Stokes number near the center of the channel is large
enough to allow for particle trajectory crossing, which can lead to
unphysical delta shocks in two-fluid simulations. A similar trend to
the one observed for the phase velocities is present in the particle-
phase volume fraction profiles predicted by MFIX-QMOM (Fig. 5(a)),
which again are unchanged along the height of the computational
domain. In both the partial and fully coupled cases, the granular
temperature profiles predicted by MFIX-QMOM (Fig. 5(b)) show a
temperature peak very close to the wall, and significantly lower val-
ues at the center of the channel. This is justified by the fact that in
the zone next to the wall, particles hit the wall and get reflected,
giving origin to an increase in the particle velocity variance, since
the net flux of particles is zero, but the particle velocity abscissas
are not null. Overall, the local rms particle velocity (proportional to
	1/2) is small compared to the mean particle velocity in all of the
simulations. This fact implies that the local particle Mach number,
defined by

Map = |Up|
	1/2

, (48)

Rep Stp

Fig. 4. (a) Local particle Reynolds number and (b) local Stokes number predicted
by MFIX-QMOM for low-Stokes-number flow at t = 10 s.
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αp Θ,(m/s)2

Fig. 5. (a) Particle-phase volume fraction and (b) granular temperature predicted by MFIX-QMOM and two-fluid model (TFM) for low-Stokes-number flow at t = 10 s.

Map Knp

Fig. 6. Local particle Mach (a) and Knudsen (b) numbers predicted by MFIX-QMOM
for low-Stokes-number flow at t = 10 s.

is very large (see Fig. 6(a)), indicating that hydrodynamic models for
the particle phase are likely to fail (Struchtrup, 2005). The granular
temperature profile predicted by the two-fluid model does not show
temperature peaks next to the walls, due to the presence of a Knud-
sen layer. This can be justified by observing that the Johnson and
Jackson (1987) boundary conditions in the case of reflective walls
corresponds to set the granular temperature flux to zero. In other
words, the two-fluid model lacks of a mechanism to convert the
impinging particle velocity into granular energy, even if the wall-
normal velocity is null. This might also explain the differences in the
shape of the velocity profiles observed in Fig. 3(b).

Better insight into the flow characteristics can be achieved by
considering the local particle Knudsen number written for highMach
number flows4 (Kogan, 1969) in terms of the local collision time �c
(Eq. (20)) as

Knp =
√

�
2

�c|Up|
D

= �dp|Up|
12

√
2Dg0�p	

1/2
∝ 1

�p
Map, (49)

4 In the case of low Mach number flows (Map �1) the characteristic velocity
of the particles is given by the square root of the granular temperature, leading
to a different definition of the Knudsen number Knp = �dp/(12

√
2Dg0�p). However,

for high Mach number flows (Map >1) like those considered in this work, the
characteristic velocity of the particles is the mean particle velocity.

αp |Uf|, m/s |Up|, m/s
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Fig. 7. Instantaneous contour plots of (a) the particle volume fraction, (b) the flu-
id-phase velocity magnitude and (c) the particle-phase velocity magnitude predicted
by the Euler–Lagrange simulations at time t = 0.19 s for finite-Stokes-number flow.

where �p is the particle mean free path. Note that the particle Knud-
sen number will be large if either the flow is very dilute, or if the
particle Mach number is large. As shown in Fig. 6(a), in this flow
Map is relatively large due to the low granular temperature. The pro-
files of the local particle Knudsen number from the MFIX-QMOM
simulations are reported in Fig. 6(b). The values of the local particle
Knudsen number are well outside the slip regime, where rarefaction
effects can be described using partial slip boundary conditions (Bird,
1994; Rosner and Papadopoulos, 1996; Struchtrup, 2005). For values
of Knp>0.1, higher-order approximations of the kinetic equation
are necessary, because the rarefaction effects extend inside the bulk
of the system (Bird, 1994; Galvin et al., 2007). The particle Knudsen
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Fig. 8. Instantaneous contour plots of (a) the particle volume fraction, (b) the fluid-phase velocity magnitude and (c) the particle-phase velocity magnitude predicted by the
MFIX-QMOM simulations at time t = 0.66 s for finite-Stokes-number flow.

number is inversely proportional to the rms particle velocity, and
to the particle-phase volume fraction. In the situation considered in
this work, the granular temperature is relatively low, leading to a
small number of collisions, even though the particle-phase volume
fraction is not particularly small.

In light of these observations, it is worth reconsidering the
formation of transient structures with high particle concentration
in gas–solid risers. In order to transport the solid particles, risers
operate under highly turbulent conditions (i.e., 1>Ref ), where vor-
tical structures typical of fully developed turbulent flow are known
to induce particle segregation and cluster formation. For the low-
Stokes-number flow, the fluid velocity was purposely restricted
to laminar conditions, as is evident from the fluid velocity profile
in the partially coupled case, which has the well-known parabolic
shape. As a consequence, the phenomenon of particle segregation
induced by the fluid turbulence is excluded. Nevertheless, the local
Knudsen and Mach numbers for the particle phase are sufficiently
large to expect non-equilibrium effects to be important. As a conse-
quence, to properly predict the behavior of the particle phase when
particle collisions are not dominant (e.g., very dilute flows or large
particle Mach number), it is necessary to adopt methods that can
resolve non-equilibrium phenomena, such as the Euler–Lagrange
approach or the quadrature-based moment method.

5.2. Finite-Stokes-number flow

The results obtained with MFIX-QMOM for finite-Stokes-number
flow are validated against Euler–Lagrange and two-fluid model pre-
dictions in this section. Due to the intrinsic noise of Euler–Lagrange
simulations, the characteristic instability of the flow, which is

αp |Uf|, m/s |Up|, m/s
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0.06
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Fig. 9. Instantaneous contour plots of (a) the particle volume fraction, (b) the flu-
id-phase velocity magnitude and (c) the particle-phase velocity magnitude predicted
by the Euler–Lagrange simulations at time t = 0.44 s for finite-Stokes-number flow.
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Fig. 10. Instantaneous contour plots of (a) the particle volume fraction, (b) the fluid-phase velocity magnitude and (c) the particle-phase velocity magnitude predicted by
the MFIX-QMOM simulations at time t = 1.20 s for finite-Stokes-number flow.

discussed later, appears earlier than in MFIX-QMOM simulations.
As a consequence, we shall compare property fields predicted by
Euler–Lagrange and MFIX-QMOM at different times. On the other
hand, the two-fluid model results are compared with MFIX-QMOM
results at the same times.

5.2.1. Euler–Lagrange and MFIX-QMOM comparison
The results provided by Euler–Lagrange simulations at t = 0.19 s

are reported in Fig. 7, and the corresponding MFIX-QMOM predic-
tions at t = 0.66 s are shown in Fig. 8. The snapshots correspond to
the phase immediately following the beginning of the simulation,
when particles start to move away from the walls towards the cen-
ter of the channel because they are reflected by the wall. This leads
to the formation of two strips almost parallel to the walls, where
the fluid velocity reaches its maximum value. Two bands at higher
particle concentration start to form on the internal side with re-
spect to the channel centerline of the two strips at higher void frac-
tion. When the particle concentration in the two bands shown in
Fig. 8(a) is high enough to create a consistent interface between the
zone at lower particle concentration and the one at higher particle
concentration, due to the large velocity gradient across the inter-
face between the two phases, an instability starts to develop, which
rapidly propagates to the rest of the system and, in the end, leads
to the formation of structures at higher particle concentration, initi-
ating the segregation phenomena experimentally observed in risers.
This is shown for Euler–Lagrange and MFIX-QMOM simulations, re-
spectively, in Figs. 9 (t = 0.44 s) and 10 (t = 1.20 s). Overall, the flow

structures observed before (Figs. 7 and 8) and after (Figs. 9 and 10)
the flow becomes highly transient are very similar in the MFIX-
QMOM and Euler–Lagrange simulations.

5.2.2. Two-fluid model and MFIX-QMOM comparison
The two-fluid model predictions at t = 1.15 s are reported in

Fig. 11, and can be compared with MFIX-QMOM results, taken at
t = 1.15 s, reported in Fig. 12. Note that in both models, the same
radial distribution function g0 and modified drag law (Wen and Yu,
1966) are employed. In this case the particle volume fraction field
presents a similar behavior in both MFIX-QMOM and two-fluid pre-
dictions, following the mechanism that leads to the development
of the flow instability observed in the Lagrangian simulation. The
propagation of the instability in MFIX-QMOM simulations is sig-
nificantly influenced by the introduction of the radial distribution
function g0 and the modified drag coefficient, which make the insta-
bility propagate more quickly when a high enough volume fraction
is reached locally. However, this does not alter the overall mecha-
nism that leads to the instability and to the consequent segregation
phenomena.

The local Knudsen, Stokes and Mach numbers predicted by
QMOM simulations are reported in Fig. 13. In this figure, the local
dimensionless numbers are plotted at t = 1.15 s, which corresponds
to the instant where the Knudsen and Mach number show their
minimum values (i.e., are closest to the hydrodynamic limit), before
increasing due to the development of the instability. The Knudsen
number locally reaches values well above the range of validity of
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Fig. 11. Instantaneous contour plots of (a) the particle volume fraction, (b) fluid-phase velocity and (c) the particle-phase velocity at t = 1.15 s, predicted by the MFIX
two-fluid model for finite-Stokes-number flow.

Fig. 12. Instantaneous contour plots of (a) the particle volume fraction, (b) the fluid-phase velocity magnitude and (c) the particle-phase velocity magnitude predicted by
the MFIX-QMOM simulations at time t = 1.15 s for finite-Stokes-number flow.
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Fig. 13. Instantaneous contour plots of the local (a) Knudsen number, (b) Stokes number and (c) Mach number at t=1.15 s, predicted by MFIX-QMOM for finite-Stokes-number
flow.

the two-fluid model (Knp>1) and the particle Stokes number is
about 10 times higher than in the low-Stokes-number flow, due to
the larger particle diameter, with peak values near 1.4. This means
that in certain regions of the finite-Stokes-number flow, particles
do not adapt immediately to the fluid flow, and lead to the typical
conditions where particle trajectory crossing becomes significant.
Likewise, outside the central core region where the particle volume
fraction is relatively high, the particle Mach number is very large.
Under these conditions, one cannot expect a classical hydrodynamic
model to yield accurate predictions (Struchtrup, 2005).

It is worth to observe this value of particle concentration corre-
sponds to an average collision time of 1.78× 10−2 s, calculated con-
sidering a granular temperature of 10−4 m2/s2 and the average value
of the volume fraction 0.04. This value if consistent with the obser-
vations about the Knudsen number we made with respect to the low
Stokes number case. However, the collision time can be significantly
lower locally, where the particle concentration increases due to seg-
regation phenomena, as a consequence, it is necessary to account for
collisions also in dilute cases like those examined in this work.

6. Conclusions

A quadrature-based moment method for the solution of the ki-
netic equation describing the evolution of a particle phase was cou-
pled with a fluid solver to simulate the behavior of fully coupled
fluid–particle flows. The applicability and the capabilities of the

MFIX-QMOM code were discussed in comparison to CFD codes that
use the classical two-fluid model. A vertical particle-laden channel
flow with elastic collisions was used to demonstrate the robustness
of the computational algorithm.

In general, we have shown that it is important to consider the lo-
cal particle Knudsen number when simulating fluid–particle flows.
The classical two-fluid model is applicable for cases where the parti-
cle Knudsen number is relatively small. We have seen that the parti-
cle Knudsen number will be large if either the particle-phase volume
fraction is very small or the particle Mach number is large. Due to
the dissipation of granular temperature by fluid–particle drag and
inelastic collisions, it is likely that the particle Mach number will be
large in many fluid–particle flows.

Finally, the objective of future work is to extend the QMOM ap-
proach to account for finite size particles, and deal with the denser
cases, where it is necessary to enforce the constraint represented by
the maximum value of the particle volume fraction. Note that, even
for dilute riser flows, the particle phase can be locally dense, thus
the code for simulating riser flows must be able to handle dense
cases.
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Appendix A. The moment-inversion algorithm

The moment-inversion algorithm is key to the quadrature-based
moment method, because it allows the weights and abscissas in V8 to
be found from the moments W3. The procedure is summed up here,
and further details can be found in Fox (2008). The first step is to
consider the mean particle velocity vector and the particle velocity
covariance matrix:

Up = 1
M0 [M

1
1,M

1
2,M

1
3]

T, (50)

rU =

⎡
⎢⎢⎣

M2′
11 − U2

p1 M2′
12 − Up1Up2 M2′

13 − Up1Up3

M2′
12 − Up1Up2 M2′

22 − U2′
p2 M2′

23 − Up2Up3

M2′
13 − Up1Up3 M2′

23 − Up2Up3 M2′
33 − U2

p3

⎤
⎥⎥⎦ , (51)

where M2′
ij =M2

ij /M
0. To perform the inversion of the set of moments

in W3, we introduce the vector

X = A−1(v − Up), (52)

where A is a linear transformation defined as the lower Cholesky
decomposition of the covariance matrix rU . The moments in W3

are then normalized with respect to the vector X, and the set of
normalized moments W3∗

i is defined for each component of X:

W3∗
i = {m0

i = 1,m1
i = 0,m2

i = 1,m3
i }. (53)

Weights and abscissas in each direction are found by applying the
two-node quadrature formulas to the three sets of pure normalized
moments with respect to the directions:

ni1 = 0.5 + �i, Xi1 = −
√
1 − 2�i
1 + 2�i

,

ni2 = 0.5 − �i, Xi2 = +
√
1 + 2�i
1 − 2�i

, (54)

where

�i =
0.5m3

i√
4 + (m3

i )
2
. (55)

This operation provides the univariate sets of weights and abscissas:

V∗
1 = {n11,X11;n12,X12},

V∗
2 = {n21,X21;n22,X22},

V∗
3 = {n31,X31;n32,X32}. (56)

The three-dimensional quadrature approximation is defined then
using the tensor product of the univariate abscissas, leading to the
definition of V∗


:

V∗
8 = [(n∗

1,X11,X21,X31), (n∗
2,X12,X21,X31),

(n∗
3,X11,X22,X31), (n∗

4,X12,X22,X31),

(n∗
5,X11,X21,X32), (n∗

6,X12,X21,X32),

(n∗
7,X11,X22,X32), (n∗

8,X12,X22,X32)]. (57)

The weights n∗
i have to be determined by imposing the constraints

given by the univariate nodes, by solving the linear system of equa-
tions:

n∗
1 + n∗

3 + n∗
5 + n∗

7 = n11,

n∗
2 + n∗

4 + n∗
6 + n∗

8 = n12,

n∗
1 + n∗

2 + n∗
5 + n∗

6 = n21,

n∗
3 + n∗

4 + n∗
7 + n∗

8 = n22,

n∗
1 + n∗

2 + n∗
3 + n∗

4 = n31,

n∗
5 + n∗

6 + n∗
7 + n∗

8 = n32, (58)

whose rank is four because ni1 + ni2 = 1 for i = 1, 2, 3. As a conse-
quence, four additional equations are required, three of which are
obtained by observing that the three second-order normalized cross
moments XiXj are zero, due to the linear transformation applied at
the beginning of the procedure, and the fourth equation is obtained
by writing the third-order moment X1X2X3 in terms of the weights
and abscissas, since its value is known. With the solution of the set
of eight linear equations obtained above, the inversion algorithm is
defined, and it is possible to compute V8 from W3.

It is worth to notice that all 20 moments tracked by Eq. (11) are
required to define the moments inversion algorithm that allows the
weights and abscissas to be found:

• The 10 pure moments in each spatial direction (m000, m100, m010,
m001, m200, m020, m002, m300, m030, m003) are required to find the
univariate weights nij and abscissas Xij.

• The three second order cross moments m110, m101, m011 and the
third order cross moment m111 are used to obtain a linear system
for the multivariate weights with a unique solution.

• The remaining six moments (m210, m201, m210, m120, m102, m021
and m012) are required to have closed expressions of the other
third order moments.

As a consequence, the set of moments required to define the quadra-
ture approximation with two nodes for each spatial direction is ex-
actly made of the 20 considered elements.

Appendix B. Dimensionless equations for laminar fully developed
channel flow

In MFIX-QMOM the model equations are solved in dimensional
form using the time-dependent solver described in Section 3. How-
ever, in order to clarify the physics, it is useful to consider the di-
mensionless model equations for the special case of laminar, fully
developed channel flow. The equations are made dimensionless by
using the average fluid velocity Uf , the fluid density �f , and the chan-
nel width D. Taking x2 as the vertical direction and x1 as the hori-
zontal direction, in laminar fully developed channel flow gradients
exist only in the x1 direction. Likewise, the only non-zero compo-
nents of phase velocities are Uf,2(x1) and Up,2(x1). Note that the fluid
and particle continuity equations are exactly satisfied in this case.

The steady-state dimensionless fluid momentum equation in the
x2 direction reduces to

1
Ref

d
dx∗

1

(
�f

dU∗
f,2

dx∗
1

)
− �fg

∗ + � =

∑

�=1

n�

∗
fp,�(U

∗
f,2 − U∗

�,2), (59)

where x∗
1 = x1/D, U∗

f,2 = Uf,2/Uf , g∗ = g/(DUf ), and � is the dimen-

sionless pressure gradient used to produce a fixed value for Uf . The
dimensionless drag coefficient is


∗
fp,� = 3�fCD(Rep�,�f )|U∗

� − U∗
f |

4d∗
p

, (60)
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where U∗
� =U�/Uf and d∗

p = dp/D. Using symmetry, it is easily shown
that

� = �fg
∗ + 2

Ref

[
�f

dU∗
f,2

dx∗
1

]
x∗
1=0

+

∑

�=1

∫ 1

0
n�


∗
fp,�(U

∗
f,2 − U∗

�,2)dx
∗
1, (61)

where �f is the average fluid volume fraction. The first term on the
right-hand side of Eq. (61) is due to the weight of the fluid phase and
the second is the viscous drag at the channel walls. The third term
(which is usually the largest) is due to the weight of the particle
phase. In the Stokes flow regime, the third term simplifies to

�p = 1
St

∫ 1

0
�p(U∗

f,2 − U∗
p,2)dx

∗
1, (62)

where the Stokes number is defined by St=Ref (d∗
p)

2/18. Note that in
order to attain a steady state, �p must be non-negative. In the other
two directions, the fluid momentum equation yields


∑
�=1

n�

∗
fp,�U

∗
�,1 = 0 and


∑
�=1

n�

∗
fp,�U

∗
�,3 = 0. (63)

Note that Eq. (63) does not imply that the individual velocity ab-
scissas are null (only the weighted averages). Finally, recall that
�p = ∑

� n� and that the no-slip boundary conditions for the fluid
require U∗

f,2(0) = U∗
f,2(1) = 0.

The particle-phase moment equations are made dimensionless
using the same characteristic velocity and length scales as used for
the fluid phase. In general, the moments of order n have units of
(velocity)n. Thus, such moments are made dimensionless by dividing
them by U

n
f . For laminar fully developed channel flow, the dimen-

sionless moment equations reduce to

d�pU∗
p,1

dx∗
1

= 0, (64)

dM2∗
1i

dx∗
1

= D

U
2
f

F1i , (65)

dM3∗
1ij

dx∗
1

= D

U
3
f

(C2
ij + F2ij ), (66)

dM4∗
1ijk

dx∗
l

= D

U
4
f

(C3
ijk + F3ijk). (67)

The first expression can be integrated to find U∗
p,1 = 0 (due to the

zero flux of particles through the walls). Likewise, due to symmetry,
U∗
p,3 = 0 as well as M2∗

13, M
2∗
23, M

3∗
113, M

3∗
123, M

3∗
223 and M3∗

333. (Recall that

M4∗
ijk1 is closed by quadrature.) Thus, there are a total of 12 non-zero

moments. Note that the constraints on the mean particle velocity do
not imply that the velocity abscissas are also null.

Starting with Eq. (65), the three components (i = 1, 2, 3) yield,
respectively,

�∗
p
d�p∗

11

dx∗
1

= −

∑

�=1

n�

∗
fp,�U

∗
�,1 = 0, (68)

�∗
p
d�p∗

12

dx∗
1

=

∑

�=1

n�

∗
fp,�(U

∗
f,2 − U∗

�,2) − �p�∗
pg

∗, (69)


∑
�=1

n�

∗
fp,�U

∗
�,3 = 0, (70)

where �∗
p = �p/�f and ∗

ij = ij/U
2
f . The right-hand sides of Eqs. (68)

and (70) follow from Eq. (63). Integration of Eq. (68) yields that

�p∗
11 is constant (independent of x∗

1). We can use Eq. (59) to rewrite
Eq. (69) as

�∗
p
d�p∗

12

dx∗
1

= � + 1
Ref

d
dx∗

1

(
�f

dU∗
f,2

dx∗
1

)
− (�f + �p�∗

p)g
∗. (71)

Using symmetry at the walls and the centerline, ∗
12(0)= ∗

12(1/2)=
∗
12(1) = 0. Integrating Eq. (71) yields5

�p(x∗
1)

∗
12(x

∗
1) = �

2�∗
p
(2x∗

1 − 1) + �f (x∗
1)

�∗
pRef

dU∗
f,2

dx∗
1

(x∗
1)

−
∫ 1/2

x∗
1

(
�f

�∗
p

+ �p

)
g∗ dx∗

1. (72)

Evaluating this equation at x∗
1 = 0 yields an independent expression

for �. Comparing with Eq. (61) it follows that


∑
�=1

∫ 1

0
n�


∗
fp,�(U

∗
f,2 − U∗

�,2)dx
∗
1 = �p�∗

pg
∗, (73)

i.e., the momentum exchange term is equal to the weight of the
particles as stated earlier.

Returning to Eq. (71) and considering a case where the fluid has
free-slip boundary conditions at the walls (so that the fluid velocity
gradient is null), we find that

�∗
p
d�p∗

12

dx∗
1

= (�f + �p�∗
p)g

∗ − (�f + �p�∗
p)g

∗. (74)

The right-hand side of this expression will be null if the particles
are uniformly distribution across the channel, in which case ∗

12 =0.
The latter implies that all fluxes in the x1 direction would be null,
and hence the granular temperature will go zero due to drag. This
observation points out the crucial role of the fluid velocity gradients
in generating the non-uniform particle fields for this flow.

The next set of equations comes from the four non-trivial terms
in Eq. (66):

�∗
p
dM3∗

111

dx∗
1

= −2

∑

�=1

n�

∗
fp,�U

∗
�,1U

∗
�,1 + �∗

p�p

�∗
c

(∗
eq − ∗

11), (75)

�∗
p
dM3∗

112

dx∗
1

=

∑

�=1

n�

∗
fp,�(U

∗
f,2U

∗
�,1 − 2U∗

�,1U
∗
�,2) − �∗

p�p

�∗
c

∗
12, (76)

�∗
p
dM3∗

122

dx∗
1

= 2

∑

�=1

n�

∗
fp,�(U

∗
f,2−U∗

�,2)U
∗
�,2−�∗

pg
∗U∗

p,2+
�∗
p�p

�∗
c

(∗
eq − ∗

22),

(77)

�∗
p
dM3∗

133

dx∗
1

= −2

∑

�=1

n�

∗
fp,�U

∗
�,3U

∗
�,3 + �∗

p�p

�∗
c

(∗
eq − ∗

33). (78)

The dimensionless collision time, which is closely related to the local
particle Knudsen number defined in the main text, is defined by

�∗
c = �1/2d∗

p

12�pg0(	
∗)1/2

, (79)

where the dimensionless granular temperature is 	∗ = 	/U
2
f .

Eqs. (75)–(78) all have the same form, thus we will discuss the phys-
ical meaning of the terms in Eq. (78) as an example. The term on the

5 We have used the fact that the gradient of the fluid velocity is null on the
centerline.
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left-hand side represents the granular energy flux in the x1 direction
for ∗

33 away from locations where it is produced (e.g., near the
walls). The first term on the right-hand side is the dissipation of
granular energy by the fluid drag, which can be very significant
for small Stokes numbers (i.e., for large 
∗

fp,�). The second term on
the right-hand side is the redistribution of granular energy due to
collisions. Note that for elastic collisions the sum of the diagonal
redistribution terms is null (i.e., granular energy is conserved during
elastic collisions). Examples of the moments plotted versus x∗

1 for a
vertical channel flow can be found in Fox (2008).

In conclusion, we note that the fluid drag has two competing
effects on the granular temperature in this flow. On the one hand,
fluid drag is needed to produce granular energy through a non-zero
∗
12 acting on the non-zero mean particle velocity gradient. (In other

words, both ∗
12 �0 and dUp,2/dx1 �0 result from fluid drag.) On the

other hand, fluid drag dissipates granular energy. Thus, the steady-
state granular temperature will be maximum for an intermediate
value of the Stokes number, and go to zero in the two extremes
(St = 0 and St = ∞6 ).

Appendix C. Two-fluid model equations

The equations used in the two-fluidmodel simulations are briefly
summarized up in this appendix. The reader is invited to refer, for
example, to Gidaspow (1994) for further details on their derivation.
The fluid phase continuity equations are identical to those reported
in Section 2.1. For the particle phase, a continuity equation

��p�p

�t
+ ∇(�p�pUp) = 0, (80)

and a momentum equation

�
�t

(�p�pUp) + ∇(�p�pUpUp)

= ∇ · sp − �p∇p − ∇Pp + �p�pg + Kdrag(Up − Up) (81)

are solved, where the solids stress tensor has the form

�p = �p[∇Up + ∇TUp] + (�p − 2
3�p)(∇ · Up)I. (82)

The transport equation

3
2

[
�
�t

(�s�s	s) + ∇(�s�sUs	s)

]

= (−PsI + ss) : ∇Us + ∇(�s∇	s) − �s + Jvis (83)

is solved to compute the granular temperature	p. The particle phase
shear viscosity is given by the sum of a collisional and a kinetic
contribution (Gidaspow, 1994)

�p = �p,col + �p,kin, (84)

where

�s,col =
4
5
�2
p�pdpg0(1 + ep)

(
	p

�

)1/2

(85)

and

�p,kin =
10�pdp

√
	p�

96g0(1 + ep)

[
1 + 4

5
(1 + ep)�pg0

]2
. (86)

6 For elastic collisions, the case with St = ∞ has no dissipation mechanism.
Thus, the total granular energy in the system will remain unchanged from the initial
conditions. For finite St, the system will achieve a steady state where production
and dissipation balance.

The particle phase bulk viscosity is given by equation

�p = 4
3
�2
p�pdpg0(1 + ep)

(
	p

�

)1/2

. (87)

The particle pressure is calculated according to equation

Pp = �p�p	p + 2�p�
2
pg0	p(1 + ep). (88)

The conductivity of the granular energy is calculated as

�p =
150�pdp

√
	p�

384g0(1 + ep)

[
1 + 6

5
g0�p(1 + ep)

]2

+ 2�2
p�pdpg0(1 + ep)

(
	p

�

)1/2

, (89)

while the dissipation of granular energy due to collision is given by

�p = 3(1 − e2p)�p�
2
pg0	s

⎡
⎣ 4
dp

√
	p

�
− ∇ · Up

⎤
⎦ . (90)

Finally, the dissipation of granular energy due to viscous damping
Jvis is modeled as

Jvis = −3Kdrag	p. (91)

C.1. Boundary conditions

The boundary conditions for the granular phase were set accord-
ing to Johnson and Jackson (1987), who developed partial slip bound-
ary conditions for the velocity

�p,w = −�
6

�p

�p,max
��sg0

√
3	pUp,w (92)

and for the granular temperature

q	,p = �
6

�p

�p,max
��pg0

√
3	p|Up,w|2 − �

4
�p

�p,max
(1 − e2p,w)�pg0

√
3	3

p,

(93)

where �p,w and q	,p are, respectively, the stress and the granular
energy flux at the wall. Is is worth to notice that, the boundary
condition for the velocity degenerates in a free slip condition if the
specularity coefficient � is set to zero. In the same way, setting �=0
and ep,w=1, reduces Eq. (93) to a Neumann boundary condition (zero
flux).

Appendix D. Comparison of computational times

A comparison of the computational times required by the two-
fluid model implemented into MFIX and of MFIX-QMOM to perform
the simulation considered in this work is reported in Table 2. Com-
putational times were evaluated by running each simulation on a
single core of an Intel Xeon Processor with a clock frequency 3.0GHz.
The computational time required in the high-St case, run assuming
only one-way coupling with the fluid reduces to 4.1h, showing that
an important role in the computational time is due to the fluid solver
and to the coupling procedure.

Table 2
Computational times (hours) of two-fluid model and MFIX-QMOM.

Case Two-fluid QMOM Ratio (QMOM/TF)

Low-St 193.9 66.99 0.35
High-St 1.5 5.76 3.84
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