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Abstract: A hybrid Lagrangian-Eulerian methodology is

developed for numerical simulation of turbulent mixing

and combustion in arbitrary three-dimensional time-

dependent geometric configurations. The context is a prob-

ability density function (PDF) based approach intended

for modelling in cylinder processes in reciprocating piston

internal combustion (IC) engines. Issues addressedinclude

mean estimation, particle tracking and particle number-
density control on three-dimensional unstructured

deforming meshes. The suitability of the methodologyfor
statistically time-dependent three-dimensional turbulent

flow with large density variations is demonstrated via

simulations of turbulent freon vapour/air mixing on an

unstructured deforming mesh representing an idealized

IC engine [13]. Computed profilesof mean and r.m.s.freon

mole fractions show good quantitative agreement with

measurements. Moreover, inherent advantages of the
Lagrangian-Eulerian PDF approach are demonstrated,

compared to Eulerian finite volume solutions of an

(approximately) equivalent set of moment equations. The

new approachis, by design, compatiblewith existing com-

putational fluid dynamics codes that are used for multi-

dimensional modelling of in-cylinder thermal fluids

processes. This work broadens the accessibility of PDF
methods for practical turbulent combustion systems.

~

Key words: turbulent mixing, combustion, probability

density function, modelling, unstructured deforming
meshes

1. Introduction

Improved physical models and numerical pro-
cedures for turbulent thermal fluids processes are

ess.-tial in efforts to reduce the fuel consumption
and pollutant emissions of practical non-homo-

geneous turbulent combustion systems. In the auto-
motive industry, for example, direct injection (01)

engines are of interest for their high fuel-economy
potential [1,2]. In DI engines, liquid fuel is injected
directly into the combustion chamber, resulting in a
highly non-homogeneous mixture of fuel, air and
residual products of combustion at the time of

ignition. Introduction of 01 technology has been
slowed by high emissions levels of unburned hydro-
carbons, oxides of nitrogen and soot. Predictive
three-dimensional transient simulations of flow, tur-

bulence, mixing, fuel sprays and combustion are

critical to 01 combustion system design and optimiz-
ation; however, the requisite physical models and
numerical algorithms lie at the frontiers of current

physical understanding and computability.
The motivation for this research has been to estab-

lish a computational methodology for highly strati-

fied turbulent mixing and combustion processes in
arbitrary three-dimensional time-dependent geo-
metric configurations. The modelling approach is a
composition probability density function (POF)

method. POF methods are well suited to systems
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with strong turbulence chemistry interaction and

finite-rate chemistry [3]. Because of their large
dimensionality, PDF transport equations are not

amenable to grid-based numerical techniques;
Lagrangian Monte Carlo (particle) methods have
been developed as an alternative [4,5]. Particle
methods for the underlying hydrodynamic field (the

filtered or averaged Navier-Stokes equations) also
have been explored [6]. However, the latter remain
immature for the complex flows of interest here.
Therefore a hybrid Lagrangian-Eulerian approach is

adopted where mean velocity, mean pressure and
turbulence scales are computed using a 'conven-
tional' grid-based computational fluid dynamics
(CFD) solver.

Significant progress has been made in bringing
PDF methods to bear on engineering flows. Anand

et ai. [7] extended a PDF method to incompressible
statistically stationary two-dimensional elliptic flow
in computations for a backward-facing step.
Haworth [5] and Haworth and EI Tahry [8,9] devel-
oped PDF methodology for transient three-dimen-
sional variable-density flows on unstructured
deforming meshes, with applications to in-cylinder

flow and mixing in a simple reciprocating piston
engine. Correa et ai. [10] reported PDF calculations
for a statistically stationary two-dimensional meth-

ane-air flame. Several PDF2DV [11] modelling stud-
ies of statistically stationary two-dimensional
reacting flows have appeared in the literature in

recent years. In all cases cited here, a velocity com-
position PDF was used with hybrid Langrangian-
Eulerian solution algorithms.

However, these studies and others have identified

several remaining weaknesses both in physical model-
ling and in numerical methodology. Mean estimation
on unstructured meshes is a particularly acute issue.

Estimates of mean quantities obtained from particle
values are needed to set the mixture density, fluid
properties and modelled mean reaction rates; they also
appear as coefficients in the particle evolution equa-
tions. In earlier internal combustion (Ie) engine work
[5, 8, 9], a computationally intensive spline-based
algorithm was used. That approach is not well suited

to arbitrary geometric configurations.
In this article methodology shortcomings that have

limited the accessibility of PDF methods for practical
turbulent combustion systems are addressed. The
emphasis is on numerical aspects for unstructured
deforming meshes:

1. A mean estimation algorithm [12] is extended to

three-dimensional unstructured meshes; an analy-
sis of numerical error is provided for canonical
problems.

2. Other numerical issues including particle track-
ing and particle number-density control are
addressed.

3. The methodology is demonstrated via simulations

of turbulent freon/air mixing (density ratio 4.19)
on an unstructured three-dimensional deforming
mesh representing an idealized IC engine [13].

2. PDF Methods for Turbulent Reacting
Flows

Salient aspects of PDF methods are summarized,

with particular attention to the relationship between
PDF equations and stochastic particle methods. For
further information, the reader is referred to Pope [3]. /IIi

2.1 Formulation

A low Mach number assumption is invoked so that
spatial gradients in pressure do not affect the
thermochemical equations. Then the mixture mass

density p, specific heats cp and Cvand chemical pro-
duction rates S are functions only of composition,
enthalpy and a reference pressure Pothat is, at most,
a function of time: Po= po(t). Moreover, attention is
limited to high Reynolds number flows; the turbulent

transport of mass, momentum, chemical species and
enthalpy dominates molecular transport processes.

The PDF considered is a one-point joint probability
density function of the s scalar composition variables
iP (Ns species mass fractions and enthalpy, say) that
define the thermochemical state f.p('II; x, f). This
Eulerian composition PDF is a density in the s = Ns + 1
dimensional composition space; it is, in addition, a
function of up to three spatial coordinates x and of
time t. The composition space can be large in the

case of hydrocarbon-air systems. For example,
twenty-nine chemical species were considered in a
propane-air mechanism [14] used to construct a

laminar flamelet library for IC engine combustion
[15]; 30 composition variables (29 mass fractions and

enthalpy) are carried in a composition PDF method
. based on this mechanism [16].

For variable density flows, it is advantageous to
work with density weighted (Favre-averaged) quan-
tities. The Favre PDF J.p(fP; x, f), mass density func-
tion :F.p(fP;x, t) and conventional PDF f.p(fP; x, t)

are related by :F.p(fP;x, t) = <p(x, t) J.p(fP;x, t) =
p(fp, Po)f.p(fP;x, f), where <p) is the mean mixture

density. Conventional « ») and density-weighted (-)

i.
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means of any function of the composition variables
are readily computed from the PDF. Fluctuations
about the conventional mean are designated by a
single prime, while double primes are used for fluc-

tuations about the Favre mean. Thus, for any Q =
Q((j)),

fQ(IJI)jp(lJI; x, t) dlJI = <Q(x, t)

fQ(IJI)]p(lJI;x,t)dlJI=Q(x,t)

Q(x, t) = <Q(x, t) + Q'(x, t)

Q(x, t) = Q(x, t) + Q"(x, t)

..

Starting from the Eulerian partial differential equa-
tions expressing conversion of mass, momentum,
chemical species and enthalpy, a transport equation
for] =-]p(lJI; x, t) (or j or YF)can be derived:

O[<p)J] o[<p)aJ] o[<p)SaJ]-+ +
ot OX; 0Pa

0 -

= - ox[<u;'IIJI)<p)f]I

0

[/ 1 0J;a

I )
-

]+ oPa \P- OX; IJI <p) j

~

Here summation is implied over repeated indices i
or a within a term (a = I, ..., Ns + 1). The notation

<u;'IIJI) denotes the mean of the Favre velocity fluc-
tuation, conditioned on the composition being IJI.

Similarly, <p-l(oJiloxJIIJI) is the conditional mean
of the divergence of the composition variable a mol-
ecular flux r. Transport in physical space by the
Favre-mean velocity ii and transport in composition
space by chemical reaction S appear in closed form

[left-hand side of equation (2)]. On the right-hand
side are terms to be modelled. These represent trans-
port in physical space by turbulence and transport
in composition space by molecular diffusion.
Equations (1) and (2) can be combined to derive
moment transport equations; e.g. equations for the
mean and variance of species mass fractions are read-
ily derived (see below).

'.

2.2 LagrangianMonteCarlomethod

The turbulent reacting flow is represented by a large

number N of computational particles. Each particle
is assigned a weight w(i) that is proportional to the
mass of fluid that it represents. In the simplest case,

w(i)= mlN, where m is the total system mass. The ith

particle is characterized by three position coordinates
x(i)(t) and by s scalar compositions (j)(i)(t) (again,
species mass fractions and enthalpy).

Each computational particle can be interpreted as
an independent realization of the flow or as a delta

function discretization of the PDF. In a compu-

tational time step /).t, the position and compositions
of each particle evolve according to

x(i)(t + !it) = x(i)(t) + ii(x(i)(t), t) /).t + /).X~rb

(j)(i)(t + /)'t) = (j)(i)(t) + S(i>((j)(i)(t),po(t)) /).t + /).(j)~

(3)

(1) Equations (3) account for convection by the mean
flow (ii) and by turbulence (/).X~rb):the latter is the
'turbulent diffusion'. The term /).(j)~ is the

increment in composition due to molecular mixing.
Stochastic processes are used to model turbulent

diffusion and molecular mixing. Standard models
suffice for present purposes. Turbulent diffusion is
modelled as [3]

(
'

) [VrT ] [2/)'trT ]
1/2

/).X~b = ~ !it + - 1]
<p) x(i)(t) <p) x(i)(t)

(4)

(2) Here rT = cl"<p)ai1 k2IE is the turbulent diffusivity

and k, E, cl"and aT are, respectively, the turbulence
kinetic energy, dissipation rate of turbulence kinetic
energy, model coefficient (cu= 0.09) in a standard
two-equation k-E turbulence model [17] and a turbu-

lent Schmidt or Prandtl number (aT = 0.7). The quan-
tity 1] represents a vector of standardized Gaussian
random variables (zero mean, unit variance). Scalar

mixing is modelled using 'interaction by exchange
with the mean' (IEM) [18]:

/).(j)~x = -iCq> ((j)(i)- dJ)w /).t (5)

where w = Elk is a turbulence 'frequency' and Cq>
( = 2.0) is a model constant.

Equations (3), (4) and (5) imply a transport equa-
tion for the corresponding Eulerian composition PDF
gp(lJI; x, f): L

o[<p)g] o[<p)aig] o[<p)Sag]-+ +
ot OX; 0Pa

0

[ Og] 1 0 - -
=OXi rTox; +2Cq>woPa[<p)g(Pa-(j)a)] (6)

Transport equations for the first two moments of g
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are obtained by weighted integrals of equation (6)
over 'P space [equation (1)]:

o[<p><Pa]+ o[<p>u;<Pa] = ~
[

rT O<Pa]+ <p>Sa
~ ~ ~ ~

(7)
~ ~

o[<p>cp~r2] o[<p>u;cp~r2]+
ot OX;

0

[
ocpn2

]
o<P o<P

= - f'.r~ +2f'.r~~ox. ox. ox. ox., , "

~ - - ---;-a
+ 2< p>(Sa CPa- Sa CPa) - Ccp<p>wCPa

.

There is no summation over a repeated composition
index a within a term in equation (8).

By comparing equations (2) and (6), it can be seen
that the stochastic processes used to model turbulent

transport and molecular mixing in the particle equa-
tions imply closure models for corresponding terms
in the PDF transport equation. The correspondence
among PDF, moment and particle equations can be
used to advantage in developing physical models:
the modelling can be carried out in whichever con-
text is most natural. For example, at the particle level,
IEM [equation (5)] causes particle compositions to
approach the local mean composition on a time scale

w-1. At the moment level, IEM results in ~ change
in mean composition while the variance cP~r2decays
exponentially on the time scale w -1. At the PDFlevel,
IEM drives the composition PDF towards a delta
function at the local mean composition.

These equations also serve to illustrate trade-offs
between particle-based and grid-based solution stra-
tegies. A compelling benefit of particle methods is
that they circumvent the difficulty of solving a
(3 + s)-dimensional integral differential equation for
the PDF: instead integration is carried out on a large

number [N(3 + s)] of stochastic ordinary differential
equations for the particle properties. On the other

hand, several robust, accurate and efficient grid-
based methods have been developed for solving the
highly elliptic coupled PDFs that govern the three-
dimensional time-dependent mean fields (mean vel-
ocity, mean pressure, mean composition and mean

energy or enthalpy) for turbulent reacting flows in
reciprocating-piston engines and other complex
engineering devices [15,19,20]. While full particle-
based solutions to the PDF equation are possible in

principle, it is expected that a more expedient
approach will be that of a hybrid Lagrangian-
Eulerian method that can take advantage of the

I

(8)

strengths of both particle-based and grid-based
methods. Detailed analysis of consistency conditions,
numerical errors and convergence rates for hybrid
Lagrangian-Eulerian methods have been published

recently by Muradoglu et ai. [21] and by Xu and
Pope [22].

Models for L1x~b and f'1tP~ generally involve

mean quantities [formally, integrals over the PDF;
equation (1)]. In the IEM model, for example, the
mean composition appears in the particle equation

[equation (5)]. The availability of robust, accurate
and computationally efficient methods for extracting
estimates of mean quantities from noisy particle
information is crucial to the advancement of hybrid
particle/ grid-based solution methods.

3. Numerical Approach

;:.

3.1 EulerianCFDsolver

In the underlying grid-based CFD code [15,23,24],
the principal equations solved express conservation

of mass, momentum, chemical species and energy or
enthalpy for a compressible multiple-species ideal
gas mixture. These equations are solved on an

unstructured deforming mesh of hexahedral volume
elements including limited degeneracies (Fig. 1)

[dJ~
~~- ~~-~ ~EVu»

a)

~'"

b) c)

i. Ir

-
Fig. 1 Element types and mesh topology. (a) Hexahedral

element with examples of edge and face degeneracies.

(b) A non-aligned interface:each element on one side of

the interface communicates with an arbitrary number

of elements on the other side [24]. (c) Localmesh refine-

ment via cell splitting [25].
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using a finite volume discretization with co-located
cell-centred variables. A pressure-based time-
implicit algorithm is used. Accuracy is first order in
time and up to second order in space. Governing

equations are filtered (Reynolds-averaged) so that
computed dependent variables represent ensemble-
averaged quantities. Turbulence is treated using a
standard two-equation (k-E) model with wall func-
tions [17]. To accommodate complex geometric con-
figurations, non-aligned interfaces [24] and solution-

adaptive local mesh refinement via cell splitting [25]
have been implemented (Fig. 1). Second-order spatial
accuracy is maintained across non-aligned interfaces.

Here the mean velocity [a(x, f)], mean pressure
[<p(x,t)] and turbulence scales [k(X,t),E(X,t)] are
taken from the Eulerian grid-based computation;
mean composition [mass fractions Y(x, t) or mole
fractions i(x, t) and enthalpy h] is taken from the
Lagrangian Monte Carlo solution. The particle com-
positions determine the mean mixture density

[<p(x,t)] and thermodynamic properties [cp(x,t)
and Cv(x, t)] that are needed in the grid-based compu-
tation. Finite volume mean fields (vertex values) are

interpolated to particle positions using trilinear basis
functions.

-~

3.2 Meanestimation

A three-stage mean estimation algorithm IS
employed. The method extends to three-dimensional
unstructured meshes, an approach published by
Dreeben and Pope [12] for one-dimensional
problems.

To begin, the canonical problem of fitting noisy
particle data is considered. Let f(x) be a known func-
tion in physical space x. This function is to be rep-
resented using an ensemble of N particles. The ith

particle located at position x(i) has an importance
weight w(i)and a function value cj>(i).The particle data
contain noise which is modelled as

cj>(i)= f(x(i)) + a1J(i)

where 1J(i)are independent, identically distributed
(lID) standardized Gaussian random variables. Here

a is a measure of the noise in the particle data. The
objectives are to construct an estimate (P(x) for the
function f(x) from the particle data and to quantify
the error in this estimate.

The computational domain is divided into a set of
Nc convex hexahedral cells or elements; arbitrary
edge and/ or face degeneracies are permitted (Fig. 1).
Each element is prescribed by an ordered list of eight
nodes or vertices; there are a total of Ny vertices. The

Cartesian coordinates of the vertices in the kth

element are XIkl(v = I, ..., 8; k = I, ..., Nc). There are
N[kl particles in the kth element.

Within each element, the function is approximated
in a manner analogous to that used in classic finite

elements methods (FEM)[26].The global coordinates
in the kth element are denoted by x[kland the corre-
sponding element (local) coordinates by {;.Then,

X[kl({;) = Ny ({;)xIkl (v = I, ...,8) (10)

where Ny are the element shape functions and sum-
mation is implied over the repeated index v.

Similarly, the spatial variation of any dependent
variable u(x) in the interior of the kth element is

determined by the eight vertex values uIkland by the
element interpolation functions bv:

U[kl({;) = bv({;)uIkl (v=I,...,8) (11)

(9)

If the interpolation functions are chosen to be the
same as the shape functions, then the element is said
to be isoparametric. Isoparametric elements satisfy
basic convergence requirements including smooth-
ness, continuity and completeness [26]. Here an iso-

parametric representation is adopted where the
shape or interpolation functions are taken to be the
hexahedral natural (trilinear) coordinates. Given the

ith particle's global coordinates x(i)and its parent cell
[k], the transformation given by equation (10) can be
inverted numerically to yield {;(i):[kl,the particle's
position in element coordinates.

The three stages in mean estimation are: (a) kernel
estimation of weighted particle values, (b) calcula-
tion of knot (cell vertex) values and (c) construction

of the continuous approximating function within
elements. Details are provided in the Appendix. An
important aspect of the present formulation is the
use of linear interpolation functions. Linear functions

are particularly appealing for the turbulent combus-
tion application. In the construction of turbulence
closure models for conserved passive scalar quantit-
ies, it is necessary to respect physical constraints that
arise from the linearity of the governing equations
[27]. For reacting flows, computed species mean mass

'fractions must satisfy L~~l Ya ==1. Linear mean esti-
mation functions ensure the boundedness of mean

quantities and guarantee that physical constraints
applied at the particle level carry through to the
mean quantities that feed into the Eulerian grid-
based calculation. A major shortcoming of earlier
spline-based mean estimation algorithms [5,28] was
their violation of such constraints.
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To analyse the numerical errors incurred in
extracting estimates of mean quantities from noisy
particle data, an error field E(X) is introduced as the
difference between the estimator (P(x)and the under-

lying function f(x):

E(X) ==(P(x) - f(x) (12)

Three sources of error can be differentiated in par-

ticle-based methods (see the Appendix). For present
purposes, the total error in the numerical method

will be discussed and no attempt will be made to
isolate each of the three components individually.

Thus, following Haworth [5], a single integrated
r.m.s. total error Epwill be introduced:

{

I P

}

1/2

Ep == PJl [(P(xp)- f(xp)Y
(13)

and the behaviour of Ep will be monitored resulting

from variations in mesh size [mesh spacing

h ==(VtotINc)1/3, where Vtot is the total volume], in

particle number density (Npc = N INc) and in noise
(a).

3.3 Particletrackingonunstructuredmeshes

Lagrangian-Eulerian coupling demands that each
particle be associated with an element or cell and

that the association be maintained for arbitrary par-
ticle and mesh motion. Several procedures have been

developed for tracking particles through three-
dimensional unstructured deforming meshes. These

include methods based on linear basis functions

(from references [8], [9] and [29] and also S. B. Pope,

Cornell University, Ithaca, New York, personal com-
munication, 1992, and M. S. Fairfield, Los Alamos

National Laboratory, Los Alamos, New Mexico,

1993), superposition of a coarse Cartesian back-

ground mesh and the convex polyhedron method out-
lined here. The latter has been found to be

particularly robust for highly skewed unstructured

three-dimensional meshes that often arise in engin-
eering computations. Other advantages are enumer-
ated below.

The convex polyhedron method is based on a tetra-

hedral element linear basis function approach sug-
gested by Pope (personal communication, 1992). The

computational domain is decomposed into arbitrary

non-overlapping convex polyhedral regions, each
region having Nfacefaces. It is natural to use the com-
putational elements for this purpose. The essence of

the method is illustrated in Fig. 2. A face-based data
structure is employed. The nth face of volume

element k carries a location Xkn(mean position of the
vertices defining the face), an outward unit normal

vector bkn(cross-product of two face diagonals) and
connectivity information lkn (pointer to the element
that shares face n with element k). Because these

quantities are computed consistently for the two
elements sharing the face, no ambiguity arises from

non-planar face vertices. Each particle is uniquely
associated with the single element k for which

all particle-to-face heights hkn (n = I, ..., Nface) are
positive.

-

Ik4
.:!(i) (1+ Lt t)

:4 b
j

.. k4..--

Fig. 2 Particle tracking through an unstructured mesh. A two-dimensional example is shown, for clarity.
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At time t, particle i at location x(i)(t) is associated

with volume element k. It then undergoes a displace-
ment by a velocity u(i)(t) over a time step !it. The
time to intersect the nth face of element k is tintkn=
hkn/(u(i)(t). bkn);the minimum time to intersect over

the Nface faces is trllink = mi~N':;ale{max{O,tintkn}}'At the

end of the time step, the particle remains inside

element k if trllink> !it. If trllink< !it, the particle is

moved to the face intersection point Xint=

X(i>(t)+ u(i)(t)trllink' its element pointer is updated to

lknand its time step is decremented by trllink'Tracking

continues until all particles have zero time

remaInIng.

Tracking from face to face has several advantages:

.

1. Degenerate (zero area) faces are accommodated:

these simply are inaccessible to particles.
2. Deforming meshes are readily implemented via a

two-step procedure. Firstly, the particle-to-
element pointer is updated to account for vertex
motion with particle positions fixed. Secondly,

particles are tracked normally over the compu-
tational time step with fixed (new) vertex
locations.

3. It is straightfoward to tabulate the fraction of time

spent in each element when the 'particle Courant
number' IU(i) l!it / !iXk is greater than unity (!iXk

being the linear dimension of an element). Such
information is needed in the construction of

higher-order Lagrangian methods [30].

4. Particle boundary conditions are readily

implemented since it is immediately known
where and when a particle strikes a boundary of
the computational domain.

5. Finally,non-aligned interfaces [24] and local mesh
refinement [25] (Fig. 1) are accommodated with
additional pointer structures.

,

This particle tracking scheme is particularly
advantageous for tetrahedral meshes (Nface= 4): in

that case the face heights hknare identical to the natu-
ral linear basis functions that would be used for
mean estimation. A hexahedral mesh can be decom-

posed into tetrahedra, but the resulting data struc-
ture is cumbersome. The (small) computational
overhead of computing trilinear basis functions for
mean estimation is therefore accepted as an
additional operation.

3.4 Particle number density control

Particle-based computations are ideally performed in
the dense data limit. However, such large particle
numbers are generally not practical for three-dimen-

sional meshes of 105-106 volume elements. In any
case, maintaining adequate control over the spatial
distribution of particles is critical to the success of
hybrid Lagrangian-Eulerian methods.

The number of particles per unit volume in physi-
cal space is initially prescribed to be uniform. To

accommodate possible large element-to-element
volume disparities, it is necessary to impose a mini-
mum number of particles per computational element
(typically between five and ten). Particle weights are
initialized to the element's fluid mass divided by the
number of particles in the element. This ensures that
the particle and element mass and volume are
initially consistent.

As the particles and mesh vertices move, particle
number density control is exercised both to maintain
consistency between particle and element mass (or

volume) and to enforce a minimum number of par-
ticles per computational element. There is a relation-

ship between the spatial distribution of particle mass
or volume and the mean continuity equation [3]: if
the interpolated mean velocity field used to advect

particles satisfies the mean continuity equation, then
the particle spatial distribution will remain consist-
ent with the fluid mass and volume distribution.

Here rudimentary particle number density control
is implemented [9]. Particles are shifted in physical
space to maintain consistency between element and
particle volumes. Particles are cloned in elements

where the number of particles drops below a pre-
scribed threshold. In cloning, a parent particle of

weight w(i)is split into two particles of weight w(i)/2

having the same properties (fJ(i)as the parent. If the
total number of particles N approaches a prescribed
threshold Nmax,particles are selectively annihilated.
Annihilation occurs only in elements having larger
than nominal particle number density. Within an
element, low mass (weight) particles are selected
preferentially for annihilation; the mass associated

with annihilated particles is distributed among
remaining particles in the element.

4. Test Cases

.Results are reported for two test cases. The first is a
static function test where particles do not move rela-
tive to the mesh; this case serves to characterize the

error associated with extracting estimates of mean
quantities from noisy particle data. In the second

problem, the suitability of the methodology is dem-
onstrated for a configuration approaching that of a
reciprocating piston IC engine.

..
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4.1 Staticfunction

The computational domain is a right circular cylinder
of radius ro and length L; here ro= 1 and L = 2. The

number of particles in each cell is proportional to the
cell volume; within each cell, particles are distributed
uniformly in local (trilinear) coordinates. For this

simple geometry and mesh topology, the result is a
nearly uniform particle number density in physical
(global coordinate) space. Particle weights are all
equal. The ith particle is assigned a function value

cjJ(i)according to equation (9). Following Haworth [5],
the test function f(x) is taken to be

(
r

) (
5nr

) (
2JtZ

)f(x) = 1 - ~ cos 2ro sin L (14)

The algorithm outlined in the Appendix is used to
extract the estimator (/;(x)and the global r.m.s. error

Epis computed using equation (13). The response of
the error to parametric variations in mesh size

[h= (nr6L/NJl/3], particle number density (Npc=
N /NJ and noise (a) is studied. In all cases, Ep is

computed using a uniform mesh of 513 test points.
Visual comparisons between the underlying func-

tion f(x) [equation (14)] and the estimator function

(/;(x) [equation (30) in the Appendix] are provided in
Fig. 3 (Algorithm IIA). There the three-dimensional

function is evaluated at fixed values of y and z (y =
-0.0308, Z= 0.97). Since z/L is close to 0.5, the func-

tion values are small along this y = constant, z = con-

stant cut: the maximum value is approximately 0.1

~

1.0

,

-
8=

1.0

Fig.3 One-dimensional cut through a three-dimensionalstatic testfunction f(x) [equation(14)Jandfunction estimators (P(x)[equation

(30)J,Algorithm IIA, at y = -0.0308, Z= 0.97. (a) Variation in h, for fixed Npc= 40 and a = 0.25. (b) Variation in a, for

fixed h = 0.086 (Nc = 10000) and Npc= 40.
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at x = A, compared to a global maximum value for
equation (14) of unity. This choice serves to accentu-
ate differences between f(x) and (P(x).

In Fig.3a, mesh size (h) is varied with fixed Npc
and a; this emphasizes the discretization error. In
particular, the coarsest mesh (Nc = 80, h = 0.428) is

inadequate to resolve the underlying function for any
choice of Npcand a. For a = A,the estimators system-
atically clip the peaks in the underlying function (not
shown). Figure 3b similarly shows the expected

trend with increasing noise a for fixed hand Npc-

1.000

The error in estimating the underlying function is

quantified in Figs 4 and 5. Figure 4 shows the global

Lm.S. error Sp as a function of mesh spacing h for

fixed Npc = 40 and zero noise (a = 0). Algorithm IIA
gives somewhat lower error than Algorithm IIC for
this choice of bandwidth. For sufficiently small h, the
error scales approximately as hz.

Systematic variations in mesh size h, particle

number density Npc and function noise reveal the
expected trends: error decreases with mesh refine-

ment (decreasing h), error decreases with increasing

0 Algorithm IIA
D Algorithm IIC

0.100

0
i::
IlJ

0.010
D

D
0

0

0.001
0.01

D
0

D

D 0

0

1.000.10
h

Fig.4 R.m.s. error Sp[equation (13)] versus mesh size h for a three-dimensional static test function f(x) [equation (14)].Here Npc=

40, a = 0 and results for two different Stage II algorithms are shown. For Algorithm IIC, the 'bandwidth' R in units of the

local cell size V;/3 is equal to unity [equation (26)].
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Fig.5 Normalized r.m.s. error s* [equation (16)] versus uncertainty y [equation (15)]for a three-dimensional static test function f(x)

[equation (14)] with variations in mesh size h and in particle number density Npc for Algorithm IIA.
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particle number density (increasing NpJ and error
decreases with decreasing noise (decreasing a). Of
particular interest in a Monte Carlo method is the
behaviour of the random statistical error. Standard

statistical arguments suggest that the error Epshould

depend not on a and N independently, but rather on
a measure of the uncertainty in the data y, where
[5, 28]

y ==a/Nl/2pc (15)

A normalized error E* is then defined as

E* ==Ep/Y (16)

For large noise a, E* should become independent of

(a)

(b)

h and of Npc. This behaviour is evident in Fig. 5,
where large a corresponds to the left-hand side of

the figure [smallln(l/y)]. The limiting behaviour is
achieved earlier on the finer meshes (smaller h).

Figures 3 to 5 together serve to demonstrate the
consistency and error scaling of the present three-
dimensional mean estimation algorithm.

4.2 IdealizedICengine
The next test case is intended to demonstrate the

suitability of the methodology for a three-dimen-
sional transient engine-like configuration with a
large density variation. A three-dimensional mesh is

used to model the axisymmetric geometry of Fig. 6
[13]. In the experiment, freon 12 (dichlorodifluoro-

methane) vapour was injected into air through a

s
z = zit).. .

,

R
b"'2R
s
(s+c):c
2rv
2r,
a
Qcs
zp{l)

75mm
60mm
3:1
33.6 mm
41.6 mm
60 deg.
200 rlmln
simple
harmonic
3mm
0 deg. (TOC)
17.5 deg.
17mg
32m/s

Orifice Diameter
Start of Injection
Injection Duration
Injection Mass
Injection Velocity

D"'2r,
0,
<10,
m,
Vi

II'

(c)

Fig.6 An idealized reciprocating piston IC engine with fuel' (freon) injection [13]. (a) Geometric configuration. (b) Computational

mesh on a cutting plane containing the geometric axis of symmetry. (c) Computational mesh on a cutting plane normal to

the geometric axis of symmetry, z < o.
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3 mm diameter hole bored along the centre-line of

the valve stem; this was done to study fundamental
aspects of fuel injection processes in direct injection
engines. Rayleigh scattering was used to extract

ensemble-averaged profiles of freon mole fraction
mean (first moment) and variance (second central

moment). The freon-air molecular weight ratio is
4.19. Other relevant parameters are summarized in

Fig. 6.
Mesh size, particle number density and the com-

putational time step are selected to be representa-
tive of practical values for engineering calculations.
The computational mesh contains 78008 volume

elements (84543 vertices), corresponding to a nom-
inal in-cylinder mesh size of about 1 mm3. The

number of computational particles is maintained

between 1300000 and 1500000 for a nominal particle
number density of 16.20 per element. The compu-

tational time step ranges from one-eighth of a crank
angle (CA) degree (1.042 x 10-4 s) during 'fuel' injec-
tion to one-half of a degree (4.167 x 10-4 s) for the
remainder of the computation. The unstructured

character of the mesh and large variation in element
volumes are apparent in Fig. 6. The in-cylinder mesh

deforms in a simple' accordian' motion as the piston
moves. A non-aligned interface is included to isolate

the mesh topology in the vicinity of the freon jet from
the remainder of the domain. Local mesh refinement
is not used.

The composition PDF of three species mass frac-
tions (s = Ns = 3) is computed. Species 1 corresponds

to 'residual' air initially in the cylinder (z < 0),

species 2 to 'fresh' air initially upstream of the cylin-
der (z > 0) and species 3 to freon. Computations

begin at piston top dead centre (TDC) with quiescent

mean flow, uniform ambient pressure and tempera-
ture, and delta function mass fraction PDFs. The

mass flowrate of freon is prescribed as a function of
time at the inlet orifice. Isothermal walls are assumed

(300 K). Particle positions and weights are initialized
as described in Section 3.4 and evolve in time accord-

ing to equations (3) to (5) with S = O.Mean quantities

are extracted from particle values using Algorithm
IIA (see the Appendix). The combination of a low

particle number density and the simplest (and least
accurate) mean estimation schemes are selected to

challenge the robustness of the proposed compu-
tational methodology.

The fluid mixture density and specific heats are

prescribed assuming an ideal gas mixture. With Xa

denoting the mole fraction of species a and Wa its
molecular weight, the following relations pertain:

YaW

Xa = Wa

Y _XaWaa--
W

N

(
NS Y

)
-1

W = a~l WaXa= a~l W:

p=pW(RT)-l
(17)

Here R is the universal gas constant. Since Xfreon=

1 - Xairhere and the effect of temperature fluctu-
ations on mixture density is ignored, the mean mix-
ture density <p) can be written as a function of the
freon mole fraction mean as

<p) = Pair[1 + <Xfreon)C~::n -1) J
(18)

where Pair= pWair(RT)-l.

It is significant that density fluctuations resulting
from composition fluctuations are accounted for

properly in the Lagrangian PDF formulation. Each
particle's mixture density is computed using equa-
tion (17) and the mean mixture density is extracted
using the mean estimation algorithm described earl-
ier. Conventional «») or density-weighted (-)
means, and either mass or mole fractions, can be

extracted without further assumption. By contrast,
density fluctuations cannot be accommodated in an
equivalent manner in a moment formulation, even

in the absence of chemical reaction. With S ==0, equa-
tions (7) and (8), together with a suitable prescription
for <p) as a function of Ya and y;2, provide a closed
set of moment equations for the Favre mean and vari-
ance of the species mass fractions. Using only two

moments, it is not possible in general to specify <p)

in a manner that is consistent with that implied by
the full mass fraction PDF. The usual approximation
would be to ignore fluctuations in molecular weight.
In that case,

<P)FV= pW(RT)-1, (
Ns Y

)
-1

withW= LWaa=l a

(19)

Here the hybrid Lagrangian-Eulerian PDF solution
is compared to a 'conventional' Eulerian finite

volume solution of an almost equivalent set of
moment equations [equations (7) and (8) with equa-
tion (19)].

Figure 7 shows computed instantaneous fields of
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Fig.7 Computed contours of freon mole fraction mean (left) and variance (right) during the injection event on a cutting plane

containing the geometric axis of symmetry.
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freon (species 3) mole fraction mean and variance on
a cutting plane through the geometric axis of sym-

metry during the injection event. [Injection begins at
piston TDC (0°) and ends at 17.50after TDC; see
Fig. 6.] These computed fields should be axisym-
metric in the limit of sufficiently high particle
number density; departures from axisymmetry indi-
cate statistical error in the Monte Carlo method. A

richness of structure can be seen in the impulsively

started jet for about 40 CA after the start of injection.
This is followed by a quasi-steady phase that lasts

until close to the end of injection. Results for species 1
(residual air) in Fig. 8 provide an indication of the

character of the mixing field through a full engine
cycle.

Quantitative comparisons between computations

and measurement are given in Figs 9 and 10. Figure 9
contains profiles of the mean and Lm.S. freon mole

fraction along the centre-line at 10° after the start of

injection. Computed results are compared to the free-
jet measurements of Arcoumanis et al. [13]. For the
PDF computations, five curves are shown: one corre-

sponding to the geometric centre-line and the other
four to profiles extracted along lines parallel to the
centre-line a short radial distance (0.25 mm) away.

These multiple curves serve to illustrate visually the
degree of statistical error in the particle-based
method at low particle number density; ideally, the
off-axis curves should be coincident for this axisym-

metric configuration. In spite of the statistical error,

both the decay in the mean and the growth in the
r.m.s. with downstream position are captured

reasonably well by the Lagrangian-Eulerian PDF
method. By contrast, the finite volume moment solu-

tion yields similar results for the mean but underpre-
dicts the Lm.S. by about a factor of two.

Similar behaviour is evident in radial profiles at

fixed axial positions (Fig. 10). Here the several curves
for the PDF calculation correspond to radial rays in
different azimuthal directions from the centre-line.

Close to the jet exit (Fig. lOa), the PDF computation
appears to smear the steep mean gradient at the edge
of the jet somewhat and broaden the Lm.S. profile,

but the peak Lm.S. value is captured quite well. By
the second measurement station (Fig. lOb) the PDF-

computed peak Lm.S. mole fraction is slightly lower
than the measured value. These results suggest that

the combination of simple physical models for turbu-

lent diffusion and molecular mixing, standard k-E;

turbulence and a fairly coarse mesh together yield
results that are somewhat overdiffusive. The

moment solution mean profile is similar to that from

the PDF calculation, while the r.m.s. values again are

lower by a factor of two.
The factor of two difference in Lm.S. between the

Lagrangian PDF solution and the finite volume
moment solution is significant. This difference

results in part from the different effective equations
of state in the two methods, as discussed above; how-

ever, this effect is probably small. The difference is
most likely dominated by numerical dissipation.
Since the mean mole fraction profiles are similar
between the PDF and moment solutions, the pro-
duction of variance [the second term on the right-

hand side of equation (8)] should be comparable for

both methods. The physical dissipation of variance
[the last term on the right-hand side of equation (8)]

is augmented by numerical dissipation in the solution
methodology. For the Lagrangian particle method,

numerical dissipation is inherently low.
In the case of a chemically reacting jet, the mean

reaction rate would be (approximately) proportional
to the fuel mass fraction variance. Thus, in order to
make the overall heat release rate consistent with

measurements, a moment-based approach would

need to compensate for underestimation of the vari-
ance through a larger coefficient of proportionality,

or other spurious model changes.
The most significant conclusion to be drawn from

the results presented in Figs 7 to 10 is that hybrid
Lagrangian-Eulerian PDF-based modelling is feas-
ible and can yield quantitatively accurate results for
three-dimensional time-dependent flows with large

density variation using relatively low particle
number densities.

5, Summary and Discussion

Mean estimation and other numerical aspects of

hybrid Lagrangian-Eulerian methods for unstruc-
tured deforming meshes have been addressed. Test
cases have been selected to provide an assessment

of numerical error, quantitative comparison with
experimental measurements and a demonstration
of the methodology in a configuration approaching
that of a realistic reciprocating piston IC engine.

. Advantages of the hybrid Lagrangian-Eulerian solu-
tion methodology include the ability to account
properly for density fluctuations and inherently low
numerical dissipation. These advantages become
even more compelling in the case of chemically
reacting flows.

A principal concern in Lagrangian Monte Carlo
methods compared to conventional grid-based

"=
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Fig.8 Computed contours of 'residual' air (species 1) mean molefraction through a full engine cycle on a cutting plane containing

the geometric axis of symmetry.
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approaches is statistical error. The present results

suggest that usable results can be obtained using
practical particle number densities for three-dimen-
sional time-dependent flow configurations. A second
issue is computational cost. The hybrid Lagrangian-
Eulerian solution for the freon jet required approxi-
mately three times the CPU time of the moment solu-
tion. It should be noted that this represents a fairly

crude initial implementation of the particle algor-
ithms, with little specific attention to computational
efficiency. The particle-based models involve
inherently simple and repetitive operations with
weak particle-to-particle coupling; they are thus par-
ticularly well suited to a scalable parallel implemen-
tation. It is anticipated that the computational

overhead can be reduced significantly.
This work broadens the accessibility of PDF

methods for practical turbulent combustion systems.
While some specific choices have been made to facili-
tate implementation in the (predominantly) hexa-
hedral-based finite volume code used in the present
study, the methodology is compatible with most

Eulerian grid-based CFD solution methods [19,20].
In fact, it is most natural for node-based tetrahedral
element data structures.

The methodology presented is equally applicable
to composition PDFs, to velocity-composition PDFs
and to velocity composition dissipation PDFs [31].

Moreover, this provides the framework necessary for
implementing particle-based subgrid scale models of

.~

turbulence, mixing and combustion in large-eddy
simulation [32,33]. The present study represents one
component of a broader effort to develop consistent

particle-based methods and models for liquid fuel
sprays, species mixing, flamelet and non-flamelet
modes of combustion and subgrid scale models in
large-eddy simulation of turbulent reacting flows.
Fundamental aspects of Lagrangian particle methods

for representing two-phase flows have been explored
by Subramaniam [34,35].

Several interesting issues have arisen in the course
of modelling the simplified engine configuration.
These include: the detailed structure of the impul-
sively started jet and its implications for fuel injection

processes in engines, the ongoing search for
improved models of turbulence and turbulent
mixing and implications of the potentially high freon

residual fraction that may accumulate over multiple
engine cycles. These issues are beyond the scope of
the present methodology article and their discussion
is deferred to subsequent reports.

~ ~
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Appendix

A three-stage rnean estimation algorithm is pre-
sented, and numerical errors incurred in extracting
estimates of mean quantities from noisy particle data
are discussed.

StageI:kernelestimation

A kernel estimate corresponding to the jth vertex is

formed by summing over the particles in each
element that shares the vertex; the set of elements

sharing the jth vertex is denoted by Cj' (Figure 2
shows that each interior vertex of a structured three-

dimensional hexahedral element mesh is shared by
exactly eight elements.) Kernel estimates of particle

weight iDV>'weighted particle position X(j) and
weighted particle property (jj(j)are given by

N[k]

iD . = '\' '\' w(i)b ( t'(i):[k])OW ~ ~ a ~ =:00
kECji=l .....

N[k]

X. = '\' '\' w(i)x(i)b ( t'(i):[k]
)O l iD(j) ~ ~ a~ av:[k] (j)

kECji=l

N[k]

;r. . = '\' '\' W(i),f.(i)b (t'(i):[k] )O l iD'f'(j) ~ ~ 'f' a~ av:[k] (j)
kECji=l

(a = 1, ...,8; v = 1, ..., 8; j ==v: [k])
(20)
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Here C>avis Kronecker's delta, and the notation

j ==v: [k]is used to establish the equivalence between
the global ordering of vertices and the ordering
within the kth element. It is important to note that

the kernel estimates for weight and weighted particle
property are values at the weighted particle position
X(j) and not at the vertex location X[k].

Stage II: vertex values

The next step is to establish 'knot values' at element
vertices.

IIA: simple approximation

The simplest approach is to ignore the distinction
between weighted particle position and vertex

location; i.e. the vertex value is set to the correspond-
ing kernel estimate,

r/J~k]= (fi(j) (j ==v: [k]) (21)

/lB: least-squares minimization

At the next level of sophistication, vertex values are

determined from kernel estimates by a least-squares

error minimization. The error to be minimized, Ej' is
the difference between the interpolated function
evaluated at the mean weighted particle position and
the kernel estimate associated with the vertex.

Dk .

Ej = I I [r/J[k]bv(;(Xz)) - (fi(l)F
k E Cj Z= 1

(22)

Here Dk is the number of kernel estimates that lie in

the interior of the kth element. Least-squares minim-

ization requires that OE/Or/J~k]= 0 (j ==fl: [k]), which
results in

Dk

I I [C>v!,bv(;(Xz))][r/J[k]bv(;(Xz)) - (fi(l)] = 0
kECjZ=l

or

Dk Dk

I I b!,(;(Xz))bv(;(XZ))r/J[k] = I I b!,(;(Xz))(fi(l)
kECjZ=l kECjZ=l

(23)

Solving for r/J[k]requires solution of a square linear
system of size (NJ2 having a banded matrix struc-
ture. With the assumption of diagonal dominance,

the vertex values can be solved for explicitly:

Dk

I I b!'(;(Xz))(fi(l)
[k] kECjZ=l

r/J!' Dk

I I b!,(;(Xz))
kECjZ=l

(24)

While equation (24) does not correspond to an exact
least-squares minimization, it does account for the

influence of kernel estimates at neighbouring verti-
ces, and thus presumably is a better approximation
than equation (21).

/lC: non-parametric local regression

Neither IIA nor IIB provides independent control
over the size of the neighbourhood that influences a
vertex value, beyond that implicit in the element

structure. Moreover, those two algorithms are para-
metric; i.e. they assume a functional form within each

element that is given by the interpolation functions.
By contrast, algorithm IIC is non-parametric. It is
based only on certain smoothness criteria of the func-

tion to be estimated [36]. This algorithm is a direct
extension of the local regression ideas developed by
Cleveland et al. [37] and Dreeben and Pope [12].

A local polynomial estimate (Pj(x)for the function
f(x) is formed using the kernel estimate data points
in a neighbourhood of the jth vertex. The neighbour-
hood is taken to be a sphere of radius R centred at

x(j)' The vertex value at the jth vertex is then taken
to be the local estimate evaluated at the vertex
location. Here linear estimates are used. Extension to

quadratic or higher-order polynomials is straightfor-
ward but computationally more expensive. It can be
shown that, for a polynomial of order p, there are
[1 + (3P- 3)/2 +3] coefficientsto be solved for via a
matrix equation.

For this algorithm it is convenient to think of the
vertices as a global set rather than as ordered octets
associated with the Nc elements. Given the kernel
estimates associated with the vertices, the set of

kernel estimate data points in the neighbourhood
of the jth vertex D(j) is defined as D(j)=
{IIP(l)(j) ==IX(z) - x(j) I< RI, where R is a user-defined
radius of influence. Here R is specified as a multiple

of a local characteristic cell size V~/3. In the neigh-
.bourhood of the jth vertex, the local linear estimate

for f (for the purposes of determining the jth vertex
value) is given by

.,
,

,.

~

(p(j) (x) = a + bn(xn - xn(j)) (n = 1, 2, 3) (25)

The coefficients a and bnare determined by minimiz-
ing E, the weighted error between the local linear
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estimate for f and 'the kernel estimate data points
that lie in the neighbourhood of the jth vertex. The
weighted error E can be written as

E ,, [ b (X
-

)
-

]ZW (P(i)(j» )
-

= . L. a + n n(i)- xn(j) - rp(i) R W(i)
IED(j)

(26)

where W(u) (u E [0, 1]) is a weight function; here a
simple top-hat function has been used. Upon
imposing the minimization requirements (aEjaa = 0
and aEjabn = 0), a matrix equation for the coefficients
a and bn (n = 1, 2, 3) is obtained:

"T

[

Ml1 M12 M13

MZI Mzz MZ3

M31 M3z M33

M41 M4z M43

M14

][

a

]

MZ4 bl

M34 bz

M44 b3

", I W(i)(j) (fi(i)
iED(j)

I W(i)(j) (XI(i) - XI(j»)(fi(i)
iED(j)

I W(i)(j) (XZ(i) - XZ(j»)(fi(i)
iED(j)

I W(i)(j) (X3(i) - X3(j»)(fi(i)

iED(j)

(27)

where the elements of the symmetric matrix Mij are

given by

Ml1 = I W(i)(j)

iED(j)

M12 = I W(i)(j) (XI(i) - XI(j»)

iED(j)

<:.

Ml3 = I W(i)(j) (XZ(i) - XZ(j»)

iED(j)

~

Ml4 = I W(i)(j) (X3(i) - X3(j»)

iED(j)

"A - Z
Mn = L. W(i)(j) (Xl (i) - XI(j»)

iED(j)

MZ3 = I W(i)(j) (XZ(i) - XZ(j»)(XI(i) - XI(j»)
iED(j)

MZ4= I W(i)(j)(X3(i)-X3(j»)(XI(i)-XI(j»)

iED(j)

M33 = I W(i)(j) (XZ(i) - xz(j»)Z
iED(j)

M34 = I W(i)(j) (X3(i) - X3(j»)(XZ(i) - XZ(j»)

iED(j)

M44 = I W(i)(j) (X3(i) - x3(j)f

iED(j)

(28)

The weight function W(i)(j)is given by

A

(p(i)(j» )
-

W(i)(j)=W R W(i)
(29)

This 4 x 4 system is solved locally for each vertex.

Stage III:element interiors

Finally, the continuous variation of the approximat-

ing function rP (the estimate for f) in the kth element
is prescribed in terms of the vertex values formed

in Stage II:

rP[k](g) = bv(g)rp~k] (v=I,...,8) (30)

Numericalerrors in mean estimation

For an estimator of the form given in equation (30),
three sources of error can be differentiated

[12,22,28]:

E(X) = d(x) + j3(x) + r(x) (31)

Here d(x) is the deterministic error or discretization

error, j3(x) is the bias and r(x) is the random statisti-
cal error.

The discretization error results from the inter-

polation functions Ny = bvused to construct a continu-
ous field from the finite set of vertex values. If there

were no noise in the particle data (a = 0) and the
particle number density were infinite (N[k]--+00) then

Stage II would return precisely the value of the

underlying function at each node: i.e. rp~k]= f(X~k]).

The corresponding estimator is denoted as rPo(x):

rPgcJ(g)= bv(g)f(x~k]) (v=I,...,8) (32)

The deterministic error is defined in terms of rPo(x)

and f(x) as

d(x) ==rPo(x) - f(x) (33) .

This error is equal to zero at vertices. As the particle
number density increases, the condition of densedata
is reached, where the deterministic error becomes

independent of the number of particles.
The remaining error rP(x) - f(x) - d(x) is then

decomposed into systematic and random compo-
nents. The remaining systematic component is the
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bias f3(x). To understand bias, the probabilistic mean
or expected value of the estimator <(p(x) is needed

'[equation (2)]. Bias is the difference between this
value and the function (Po(x):

f3(x)==«p(x) - (Po(x) (34)

For an unbiased method, «p(x)is equal to (Po(x) and
not to the underlying function j(x). The latter would

occur only in the exceptional case where the spatial
variation in j(x) is exactly compatible with the inter-
polation functions Ny(;) = by(;). Clearly, unbiased
estimators (f3(x)==0) are desirable. In practice, bias
in particle methods arises from feedback of estimated

mean quantities into the particle evolution equations.
Finally, the random statistical error r(x) is all that

remaIns:

r(x) ==(p(x) - <(p(x) (35)

By definition, r(x) has zero mean «r(x) = 0).

Statistical error arises from the finite sample size and

noise in the particle data. The magnitude of the stat-
istical error scales as N-l/z.

Integrated mean squared error quantities can be
defined corresponding to each of the three error
fields:

d ==~ r [d(x)f dx
V Jv

z 1 r
EfJ==V Jv [f3(x)f dx

E~==~ r [r(x)f dx
V Jv

(36)

A one-dimensional study by Oreeben and Pope [12]
demonstrated that the choice of the grid spacing (for
a finite number of particles) affects the balance of
these contributions to the total error. In numerical

simulations, these mean squared errors are approxi-
mated by numerical counterparts computed on a test
grid of P points distributed uniformly through the
computational domain.
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